--- tags: - generated_from_trainer datasets: - peoples_daily_ner metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-chinese-people-daily results: - task: name: Token Classification type: token-classification dataset: name: peoples_daily_ner type: peoples_daily_ner config: peoples_daily_ner split: validation args: peoples_daily_ner metrics: - name: Precision type: precision value: 0.8608247422680413 - name: Recall type: recall value: 0.8608247422680413 - name: F1 type: f1 value: 0.8608247422680413 - name: Accuracy type: accuracy value: 0.9852778800147222 --- # bert-finetuned-ner-chinese-people-daily This model is a fine-tuned version of [bert-base-chinese](https://huggingface.co/bert-base-chinese) on the peoples_daily_ner dataset. It achieves the following results on the evaluation set: - Loss: 0.0604 - Precision: 0.8608 - Recall: 0.8608 - F1: 0.8608 - Accuracy: 0.9853 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 131 | 0.0753 | 0.6955 | 0.7887 | 0.7391 | 0.9764 | | No log | 2.0 | 262 | 0.0588 | 0.7971 | 0.8505 | 0.8229 | 0.9840 | | No log | 3.0 | 393 | 0.0604 | 0.8608 | 0.8608 | 0.8608 | 0.9853 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.13.3