--- license: mit tags: - generated_from_keras_callback model-index: - name: xtremedistil-l6-h256-uncased-future-time-references-D1 results: [] datasets: - jonaskoenig/trump_administration_statement - jonaskoenig/future-time-references-static-filter-D1 --- # xtremedistil-l6-h256-uncased-future-time-references-D1 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h256-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h256-uncased) on the [jonaskoenig/trump_administration_statement](https://huggingface.co/datasets/jonaskoenig/trump_administration_statement) and [jonaskoenig/future-time-refernces-static-filter](https://huggingface.co/datasets/jonaskoenig/future-time-refernces-static-filter) datsets. It achieves the following results on the evaluation set: - Train Loss: 0.0099 - Train Sparse Categorical Accuracy: 0.9977 - Validation Loss: 0.0128 - Validation Sparse Categorical Accuracy: 0.9976 - Epoch: 3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch | |:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:| | 0.0276 | 0.9932 | 0.0156 | 0.9968 | 0 | | 0.0138 | 0.9969 | 0.0125 | 0.9972 | 1 | | 0.0117 | 0.9974 | 0.0126 | 0.9974 | 2 | | 0.0099 | 0.9977 | 0.0128 | 0.9976 | 3 | The test accuracy is: 99.77% ### Framework versions - Transformers 4.20.1 - TensorFlow 2.9.1 - Datasets 2.3.2 - Tokenizers 0.12.1