jonatasgrosman
commited on
Commit
·
b3d28eb
1
Parent(s):
cf0ee68
uploading model
Browse files- README.md +140 -0
- config.json +76 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- vocab.json +1 -0
README.md
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fi
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
- speech
|
11 |
+
- xlsr-fine-tuning-week
|
12 |
+
license: apache-2.0
|
13 |
+
model-index:
|
14 |
+
- name: XLSR Wav2Vec2 Finnish by Jonatas Grosman
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
name: Speech Recognition
|
18 |
+
type: automatic-speech-recognition
|
19 |
+
dataset:
|
20 |
+
name: Common Voice fi
|
21 |
+
type: common_voice
|
22 |
+
args: fi
|
23 |
+
metrics:
|
24 |
+
- name: Test WER
|
25 |
+
type: wer
|
26 |
+
value: 62.39
|
27 |
+
---
|
28 |
+
|
29 |
+
# Wav2Vec2-Large-XLSR-53-Finnish
|
30 |
+
|
31 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice).
|
32 |
+
When using this model, make sure that your speech input is sampled at 16kHz.
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
The model can be used directly (without a language model) as follows:
|
37 |
+
|
38 |
+
```python
|
39 |
+
import torch
|
40 |
+
import torchaudio
|
41 |
+
from datasets import load_dataset
|
42 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
43 |
+
|
44 |
+
LANG_ID = "fi"
|
45 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
46 |
+
|
47 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split="test[:2%]")
|
48 |
+
|
49 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
50 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
51 |
+
|
52 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
53 |
+
|
54 |
+
# Preprocessing the datasets.
|
55 |
+
# We need to read the aduio files as arrays
|
56 |
+
def speech_file_to_array_fn(batch):
|
57 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
58 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
59 |
+
return batch
|
60 |
+
|
61 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
62 |
+
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
|
63 |
+
|
64 |
+
with torch.no_grad():
|
65 |
+
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
66 |
+
|
67 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
68 |
+
|
69 |
+
print("Prediction:", processor.batch_decode(predicted_ids))
|
70 |
+
print("Reference:", test_dataset["sentence"][:2])
|
71 |
+
```
|
72 |
+
|
73 |
+
|
74 |
+
## Evaluation
|
75 |
+
|
76 |
+
The model can be evaluated as follows on the finnish test data of Common Voice.
|
77 |
+
|
78 |
+
```python
|
79 |
+
import torch
|
80 |
+
import torchaudio
|
81 |
+
from datasets import load_dataset, load_metric
|
82 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
83 |
+
import re
|
84 |
+
import homoglyphs as hg
|
85 |
+
|
86 |
+
LANG_ID = "fi"
|
87 |
+
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
|
88 |
+
DEVICE = "cuda"
|
89 |
+
|
90 |
+
CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "·", "჻", "¿", "¡", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》"]
|
91 |
+
CURRENCY_SYMBOLS = ["$", "£", "€", "¥", "₩", "₹", "₽", "₱", "₦", "₼", "ლ", "₭", "₴", "₲", "₫", "₡", "₵", "₿", "฿", "¢"]
|
92 |
+
|
93 |
+
test_dataset = load_dataset("common_voice", LANG_ID, split="test")
|
94 |
+
wer = load_metric("wer")
|
95 |
+
|
96 |
+
unk_regex = None
|
97 |
+
if LANG_ID in hg.Languages.get_all():
|
98 |
+
# creating regex to match language specific non valid characters
|
99 |
+
alphabet = list(hg.Languages.get_alphabet([LANG_ID]))
|
100 |
+
valid_chars = alphabet + CURRENCY_SYMBOLS
|
101 |
+
unk_regex = "[^"+re.escape("".join(valid_chars))+"\s\d]"
|
102 |
+
|
103 |
+
chars_to_ignore_regex = f'[{re.escape("".join(CHARS_TO_IGNORE))}]'
|
104 |
+
|
105 |
+
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
|
106 |
+
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
|
107 |
+
model.to(DEVICE)
|
108 |
+
|
109 |
+
resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
110 |
+
|
111 |
+
# Preprocessing the datasets.
|
112 |
+
# We need to read the aduio files as arrays
|
113 |
+
def speech_file_to_array_fn(batch):
|
114 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
115 |
+
if unk_regex is not None:
|
116 |
+
batch["sentence"] = re.sub(unk_regex, "[UNK]", batch["sentence"])
|
117 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
118 |
+
batch["speech"] = resampler(speech_array).squeeze().numpy()
|
119 |
+
return batch
|
120 |
+
|
121 |
+
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
122 |
+
|
123 |
+
# Preprocessing the datasets.
|
124 |
+
# We need to read the aduio files as arrays
|
125 |
+
def evaluate(batch):
|
126 |
+
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
127 |
+
|
128 |
+
with torch.no_grad():
|
129 |
+
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
|
130 |
+
|
131 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
132 |
+
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
133 |
+
return batch
|
134 |
+
|
135 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=8)
|
136 |
+
|
137 |
+
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
138 |
+
```
|
139 |
+
|
140 |
+
**Test Result**: 62.39%
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "../models-fi/wav2vec2-large-xlsr-fi-sweep/checkpoint-500",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.2,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.2,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.0,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.0,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.2,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 29,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 30
|
76 |
+
}
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9067ba6beee4c6ad2692651ff18d9e95c522143d8fa38e5f155af833118e156d
|
3 |
+
size 1262056855
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"r": 0, "h": 1, "k": 2, "g": 3, "u": 4, "m": 5, "t": 6, "z": 7, "s": 8, "i": 9, "ö": 10, "v": 11, "l": 12, "q": 13, "b": 14, "e": 15, "p": 16, "y": 17, "f": 18, "d": 19, "ä": 21, "j": 22, "x": 23, "a": 24, "c": 25, "n": 26, "o": 27, "|": 20, "[UNK]": 28, "[PAD]": 29}
|