jonatasgrosman commited on
Commit
b3d28eb
·
1 Parent(s): cf0ee68

uploading model

Browse files
README.md ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fi
3
+ datasets:
4
+ - common_voice
5
+ metrics:
6
+ - wer
7
+ tags:
8
+ - audio
9
+ - automatic-speech-recognition
10
+ - speech
11
+ - xlsr-fine-tuning-week
12
+ license: apache-2.0
13
+ model-index:
14
+ - name: XLSR Wav2Vec2 Finnish by Jonatas Grosman
15
+ results:
16
+ - task:
17
+ name: Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Common Voice fi
21
+ type: common_voice
22
+ args: fi
23
+ metrics:
24
+ - name: Test WER
25
+ type: wer
26
+ value: 62.39
27
+ ---
28
+
29
+ # Wav2Vec2-Large-XLSR-53-Finnish
30
+
31
+ Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice).
32
+ When using this model, make sure that your speech input is sampled at 16kHz.
33
+
34
+ ## Usage
35
+
36
+ The model can be used directly (without a language model) as follows:
37
+
38
+ ```python
39
+ import torch
40
+ import torchaudio
41
+ from datasets import load_dataset
42
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
43
+
44
+ LANG_ID = "fi"
45
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
46
+
47
+ test_dataset = load_dataset("common_voice", LANG_ID, split="test[:2%]")
48
+
49
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
50
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
51
+
52
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
53
+
54
+ # Preprocessing the datasets.
55
+ # We need to read the aduio files as arrays
56
+ def speech_file_to_array_fn(batch):
57
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
58
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
59
+ return batch
60
+
61
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
62
+ inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
63
+
64
+ with torch.no_grad():
65
+ logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
66
+
67
+ predicted_ids = torch.argmax(logits, dim=-1)
68
+
69
+ print("Prediction:", processor.batch_decode(predicted_ids))
70
+ print("Reference:", test_dataset["sentence"][:2])
71
+ ```
72
+
73
+
74
+ ## Evaluation
75
+
76
+ The model can be evaluated as follows on the finnish test data of Common Voice.
77
+
78
+ ```python
79
+ import torch
80
+ import torchaudio
81
+ from datasets import load_dataset, load_metric
82
+ from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
83
+ import re
84
+ import homoglyphs as hg
85
+
86
+ LANG_ID = "fi"
87
+ MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish"
88
+ DEVICE = "cuda"
89
+
90
+ CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "·", "჻", "¿", "¡", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》"]
91
+ CURRENCY_SYMBOLS = ["$", "£", "€", "¥", "₩", "₹", "₽", "₱", "₦", "₼", "ლ", "₭", "₴", "₲", "₫", "₡", "₵", "₿", "฿", "¢"]
92
+
93
+ test_dataset = load_dataset("common_voice", LANG_ID, split="test")
94
+ wer = load_metric("wer")
95
+
96
+ unk_regex = None
97
+ if LANG_ID in hg.Languages.get_all():
98
+ # creating regex to match language specific non valid characters
99
+ alphabet = list(hg.Languages.get_alphabet([LANG_ID]))
100
+ valid_chars = alphabet + CURRENCY_SYMBOLS
101
+ unk_regex = "[^"+re.escape("".join(valid_chars))+"\s\d]"
102
+
103
+ chars_to_ignore_regex = f'[{re.escape("".join(CHARS_TO_IGNORE))}]'
104
+
105
+ processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
106
+ model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
107
+ model.to(DEVICE)
108
+
109
+ resampler = torchaudio.transforms.Resample(48_000, 16_000)
110
+
111
+ # Preprocessing the datasets.
112
+ # We need to read the aduio files as arrays
113
+ def speech_file_to_array_fn(batch):
114
+ batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
115
+ if unk_regex is not None:
116
+ batch["sentence"] = re.sub(unk_regex, "[UNK]", batch["sentence"])
117
+ speech_array, sampling_rate = torchaudio.load(batch["path"])
118
+ batch["speech"] = resampler(speech_array).squeeze().numpy()
119
+ return batch
120
+
121
+ test_dataset = test_dataset.map(speech_file_to_array_fn)
122
+
123
+ # Preprocessing the datasets.
124
+ # We need to read the aduio files as arrays
125
+ def evaluate(batch):
126
+ inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
127
+
128
+ with torch.no_grad():
129
+ logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
130
+
131
+ pred_ids = torch.argmax(logits, dim=-1)
132
+ batch["pred_strings"] = processor.batch_decode(pred_ids)
133
+ return batch
134
+
135
+ result = test_dataset.map(evaluate, batched=True, batch_size=8)
136
+
137
+ print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
138
+ ```
139
+
140
+ **Test Result**: 62.39%
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "../models-fi/wav2vec2-large-xlsr-fi-sweep/checkpoint-500",
3
+ "activation_dropout": 0.0,
4
+ "apply_spec_augment": true,
5
+ "architectures": [
6
+ "Wav2Vec2ForCTC"
7
+ ],
8
+ "attention_dropout": 0.2,
9
+ "bos_token_id": 1,
10
+ "conv_bias": true,
11
+ "conv_dim": [
12
+ 512,
13
+ 512,
14
+ 512,
15
+ 512,
16
+ 512,
17
+ 512,
18
+ 512
19
+ ],
20
+ "conv_kernel": [
21
+ 10,
22
+ 3,
23
+ 3,
24
+ 3,
25
+ 3,
26
+ 2,
27
+ 2
28
+ ],
29
+ "conv_stride": [
30
+ 5,
31
+ 2,
32
+ 2,
33
+ 2,
34
+ 2,
35
+ 2,
36
+ 2
37
+ ],
38
+ "ctc_loss_reduction": "mean",
39
+ "ctc_zero_infinity": true,
40
+ "do_stable_layer_norm": true,
41
+ "eos_token_id": 2,
42
+ "feat_extract_activation": "gelu",
43
+ "feat_extract_dropout": 0.0,
44
+ "feat_extract_norm": "layer",
45
+ "feat_proj_dropout": 0.2,
46
+ "final_dropout": 0.0,
47
+ "gradient_checkpointing": true,
48
+ "hidden_act": "gelu",
49
+ "hidden_dropout": 0.0,
50
+ "hidden_size": 1024,
51
+ "initializer_range": 0.02,
52
+ "intermediate_size": 4096,
53
+ "layer_norm_eps": 1e-05,
54
+ "layerdrop": 0.0,
55
+ "mask_channel_length": 10,
56
+ "mask_channel_min_space": 1,
57
+ "mask_channel_other": 0.0,
58
+ "mask_channel_prob": 0.0,
59
+ "mask_channel_selection": "static",
60
+ "mask_feature_length": 10,
61
+ "mask_feature_prob": 0.0,
62
+ "mask_time_length": 10,
63
+ "mask_time_min_space": 1,
64
+ "mask_time_other": 0.0,
65
+ "mask_time_prob": 0.2,
66
+ "mask_time_selection": "static",
67
+ "model_type": "wav2vec2",
68
+ "num_attention_heads": 16,
69
+ "num_conv_pos_embedding_groups": 16,
70
+ "num_conv_pos_embeddings": 128,
71
+ "num_feat_extract_layers": 7,
72
+ "num_hidden_layers": 24,
73
+ "pad_token_id": 29,
74
+ "transformers_version": "4.5.0.dev0",
75
+ "vocab_size": 30
76
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_size": 1,
4
+ "padding_side": "right",
5
+ "padding_value": 0.0,
6
+ "return_attention_mask": true,
7
+ "sampling_rate": 16000
8
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9067ba6beee4c6ad2692651ff18d9e95c522143d8fa38e5f155af833118e156d
3
+ size 1262056855
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]"}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|"}
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"r": 0, "h": 1, "k": 2, "g": 3, "u": 4, "m": 5, "t": 6, "z": 7, "s": 8, "i": 9, "ö": 10, "v": 11, "l": 12, "q": 13, "b": 14, "e": 15, "p": 16, "y": 17, "f": 18, "d": 19, "ä": 21, "j": 22, "x": 23, "a": 24, "c": 25, "n": 26, "o": 27, "|": 20, "[UNK]": 28, "[PAD]": 29}