--- language: fi datasets: - common_voice metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Finnish by Jonatas Grosman results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice fi type: common_voice args: fi metrics: - name: Test WER type: wer value: 62.39 --- # Wav2Vec2-Large-XLSR-53-Finnish Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Finnish using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" test_dataset = load_dataset("common_voice", LANG_ID, split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Finnish test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import homoglyphs as hg LANG_ID = "fi" MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-finnish" DEVICE = "cuda" CHARS_TO_IGNORE = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�", "·", "჻", "¿", "¡", "~", "՞", "؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》"] CURRENCY_SYMBOLS = ["{{%htmlContent%}}quot;, "£", "€", "¥", "₩", "₹", "₽", "₱", "₦", "₼", "ლ", "₭", "₴", "₲", "₫", "₡", "₵", "₿", "฿", "¢"] test_dataset = load_dataset("common_voice", LANG_ID, split="test") wer = load_metric("wer") unk_regex = None if LANG_ID in hg.Languages.get_all(): # creating regex to match language specific non valid characters alphabet = list(hg.Languages.get_alphabet([LANG_ID])) valid_chars = alphabet + CURRENCY_SYMBOLS unk_regex = "[^"+re.escape("".join(valid_chars))+"\\s\\d]" chars_to_ignore_regex = f'[{re.escape("".join(CHARS_TO_IGNORE))}]' processor = Wav2Vec2Processor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) model.to(DEVICE) resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() if unk_regex is not None: batch["sentence"] = re.sub(unk_regex, "[UNK]", batch["sentence"]) speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 62.39%