jordiclive
commited on
Commit
·
6c62f3c
1
Parent(s):
4852723
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- Nebulous/gpt4all_pruned
|
5 |
+
- sahil2801/CodeAlpaca-20k
|
6 |
+
- yahma/alpaca-cleaned
|
7 |
+
language:
|
8 |
+
- en
|
9 |
+
tags:
|
10 |
+
- sft
|
11 |
+
pipeline_tag: text-generation
|
12 |
+
widget:
|
13 |
+
- text: <|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
|
14 |
+
- text: <|prompter|>What's the Earth total population</s><|assistant|>
|
15 |
+
- text: <|prompter|>Write a story about future of AI development</s><|assistant|>
|
16 |
+
---
|
17 |
+
|
18 |
+
# LoRA Adapter for LLaMA 13B trained on more datasets than tloen/alpaca-lora-7b
|
19 |
+
|
20 |
+
This repo contains a low-rank adapter for **LLaMA-13b** fit on
|
21 |
+
- `Nebulous/gpt4all_pruned`
|
22 |
+
- `sahil2801/CodeAlpaca-20k`
|
23 |
+
- `yahma/alpaca-cleaned`
|
24 |
+
- datasets part of the OpenAssistant project.
|
25 |
+
|
26 |
+
|
27 |
+
This version of the weights was trained with the following hyperparameters:
|
28 |
+
|
29 |
+
- Epochs: 2
|
30 |
+
- Batch size: 128
|
31 |
+
- Max Length: 2048
|
32 |
+
- Learning rate: 4e-6
|
33 |
+
- Lora _r_: 16
|
34 |
+
- Lora Alpha: 32
|
35 |
+
- Lora target modules: q_proj, k_proj, v_proj, o_proj
|
36 |
+
|
37 |
+
The model was trained with flash attention and gradient checkpointing.
|
38 |
+
|
39 |
+
|
40 |
+
## Model Details
|
41 |
+
|
42 |
+
- **Developed** as part of the OpenAssistant Project
|
43 |
+
- **Model type:** PEFT Adapter for frozen LLaMA
|
44 |
+
- **Language:** English
|
45 |
+
|
46 |
+
## Prompting
|
47 |
+
|
48 |
+
Two special tokens are used to mark the beginning of user and assistant turns:
|
49 |
+
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
|
50 |
+
|
51 |
+
Input prompt example:
|
52 |
+
```
|
53 |
+
<|prompter|>What is a meme, and what's the history behind this word?</s><|assistant|>
|
54 |
+
```
|
55 |
+
The input ends with the `<|assistant|>` token to signal that the model should
|
56 |
+
start generating the assistant reply.
|
57 |
+
|
58 |
+
|
59 |
+
# Example Inference Code (Note several embeddings need to be loaded along with the LoRA weights), assumes on GPU and torch.float16:
|
60 |
+
|
61 |
+
```
|
62 |
+
from typing import List, NamedTuple
|
63 |
+
|
64 |
+
import torch
|
65 |
+
import transformers
|
66 |
+
from huggingface_hub import hf_hub_download
|
67 |
+
from peft import PeftModel
|
68 |
+
from transformers import GenerationConfig
|
69 |
+
|
70 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
71 |
+
tokenizer = transformers.AutoTokenizer.from_pretrained("jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b")
|
72 |
+
|
73 |
+
|
74 |
+
model = transformers.AutoModelForCausalLM.from_pretrained(
|
75 |
+
"decapoda-research/llama-13b-hf", torch_dtype=torch.float16
|
76 |
+
) # Load Base Model
|
77 |
+
model.resize_token_embeddings(
|
78 |
+
32016
|
79 |
+
) # This model repo also contains several embeddings for special tokens that need to be loaded.
|
80 |
+
|
81 |
+
model.config.eos_token_id = tokenizer.eos_token_id
|
82 |
+
model.config.bos_token_id = tokenizer.bos_token_id
|
83 |
+
model.config.pad_token_id = tokenizer.pad_token_id
|
84 |
+
|
85 |
+
lora_weights = "jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b"
|
86 |
+
model = PeftModel.from_pretrained(
|
87 |
+
model,
|
88 |
+
lora_weights,
|
89 |
+
torch_dtype=torch.float16,
|
90 |
+
) # Load Lora model
|
91 |
+
|
92 |
+
model.eos_token_id = tokenizer.eos_token_id
|
93 |
+
filename = hf_hub_download("jordiclive/gpt4all-alpaca-oa-codealpaca-lora-13b", "extra_embeddings.pt")
|
94 |
+
embed_weights = torch.load(
|
95 |
+
filename, map_location=torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
96 |
+
) # Load embeddings for special tokens
|
97 |
+
model.base_model.model.model.embed_tokens.weight[32000:, :] = embed_weights.to(
|
98 |
+
model.base_model.model.model.embed_tokens.weight.dtype
|
99 |
+
).to(
|
100 |
+
device
|
101 |
+
) # Add special token embeddings
|
102 |
+
|
103 |
+
|
104 |
+
model = model.half().to(device)
|
105 |
+
generation_config = GenerationConfig(
|
106 |
+
temperature=0.1,
|
107 |
+
top_p=0.75,
|
108 |
+
top_k=40,
|
109 |
+
num_beams=4,
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def format_system_prompt(prompt, eos_token="</s>"):
|
114 |
+
return "{}{}{}".format(
|
115 |
+
"<|prompter|>",
|
116 |
+
prompt,
|
117 |
+
eos_token,
|
118 |
+
)
|
119 |
+
|
120 |
+
|
121 |
+
def generate(prompt, generation_config=generation_config, max_new_tokens=2048, device=device):
|
122 |
+
prompt = format_system_prompt(prompt) # OpenAssistant Prompt Format expected
|
123 |
+
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to(device)
|
124 |
+
with torch.no_grad():
|
125 |
+
generation_output = model.generate(
|
126 |
+
input_ids=input_ids,
|
127 |
+
generation_config=generation_config,
|
128 |
+
return_dict_in_generate=True,
|
129 |
+
output_scores=True,
|
130 |
+
max_new_tokens=max_new_tokens,
|
131 |
+
eos_token_id=2,
|
132 |
+
)
|
133 |
+
s = generation_output.sequences[0]
|
134 |
+
output = tokenizer.decode(s)
|
135 |
+
print("Text generated:")
|
136 |
+
print(output)
|
137 |
+
return output
|
138 |
+
|
139 |
+
|
140 |
+
generate("What is a meme, and what's the history behind this word?")
|
141 |
+
generate("What's the Earth total population")
|
142 |
+
generate("Write a story about future of AI development")
|
143 |
+
```
|
144 |
+
|