File size: 14,035 Bytes
a70e3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8afc5
a70e3c1
de8afc5
 
 
 
 
 
 
 
a70e3c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de8afc5
 
a70e3c1
 
de8afc5
a70e3c1
 
 
 
 
 
 
de8afc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a70e3c1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swin-base_tobacco
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# swin-base_tobacco

This model is a fine-tuned version of [microsoft/swinv2-base-patch4-window8-256](https://huggingface.co/microsoft/swinv2-base-patch4-window8-256) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6059
- Accuracy: 0.835
- Brier Loss: 0.2576
- Nll: 1.2824
- F1 Micro: 0.835
- F1 Macro: 0.8348
- Ece: 0.1310
- Aurc: 0.0387

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Brier Loss | Nll    | F1 Micro | F1 Macro | Ece    | Aurc   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:----------:|:------:|:--------:|:--------:|:------:|:------:|
| No log        | 0.96  | 3    | 2.3165          | 0.11     | 0.9031     | 7.6310 | 0.11     | 0.0604   | 0.2004 | 0.8718 |
| No log        | 1.96  | 6    | 2.2894          | 0.155    | 0.8975     | 6.8146 | 0.155    | 0.0944   | 0.2230 | 0.8555 |
| No log        | 2.96  | 9    | 2.2481          | 0.215    | 0.8888     | 5.1480 | 0.2150   | 0.1472   | 0.2492 | 0.8119 |
| No log        | 3.96  | 12   | 2.1955          | 0.275    | 0.8770     | 4.2879 | 0.275    | 0.1939   | 0.2844 | 0.6562 |
| No log        | 4.96  | 15   | 2.1326          | 0.36     | 0.8619     | 3.8809 | 0.36     | 0.2199   | 0.3357 | 0.4962 |
| No log        | 5.96  | 18   | 2.0568          | 0.375    | 0.8415     | 3.9254 | 0.375    | 0.2309   | 0.3377 | 0.4471 |
| No log        | 6.96  | 21   | 1.9639          | 0.375    | 0.8126     | 3.8158 | 0.375    | 0.2319   | 0.3195 | 0.4534 |
| No log        | 7.96  | 24   | 1.8621          | 0.375    | 0.7781     | 3.3244 | 0.375    | 0.2456   | 0.2924 | 0.4833 |
| No log        | 8.96  | 27   | 1.7100          | 0.44     | 0.7273     | 2.8211 | 0.44     | 0.3136   | 0.3188 | 0.3515 |
| No log        | 9.96  | 30   | 1.5377          | 0.535    | 0.6611     | 2.4560 | 0.535    | 0.4259   | 0.3557 | 0.2259 |
| No log        | 10.96 | 33   | 1.3588          | 0.595    | 0.5825     | 2.3216 | 0.595    | 0.4933   | 0.2986 | 0.1795 |
| No log        | 11.96 | 36   | 1.2072          | 0.62     | 0.5215     | 2.3831 | 0.62     | 0.5352   | 0.2927 | 0.1541 |
| No log        | 12.96 | 39   | 1.0766          | 0.67     | 0.4715     | 2.2078 | 0.67     | 0.5966   | 0.2727 | 0.1219 |
| No log        | 13.96 | 42   | 0.9699          | 0.675    | 0.4408     | 1.8028 | 0.675    | 0.5961   | 0.2568 | 0.1215 |
| No log        | 14.96 | 45   | 0.8660          | 0.68     | 0.4011     | 1.4772 | 0.68     | 0.5978   | 0.2176 | 0.1014 |
| No log        | 15.96 | 48   | 0.7907          | 0.725    | 0.3709     | 1.4755 | 0.7250   | 0.6768   | 0.2055 | 0.0904 |
| No log        | 16.96 | 51   | 0.7362          | 0.75     | 0.3501     | 1.3822 | 0.75     | 0.7077   | 0.2042 | 0.0806 |
| No log        | 17.96 | 54   | 0.6867          | 0.76     | 0.3322     | 1.3191 | 0.76     | 0.7177   | 0.1926 | 0.0724 |
| No log        | 18.96 | 57   | 0.6572          | 0.78     | 0.3203     | 1.2996 | 0.78     | 0.7424   | 0.1920 | 0.0699 |
| No log        | 19.96 | 60   | 0.6074          | 0.785    | 0.2967     | 1.3136 | 0.785    | 0.7686   | 0.1705 | 0.0589 |
| No log        | 20.96 | 63   | 0.6050          | 0.795    | 0.2956     | 1.3729 | 0.795    | 0.7793   | 0.1762 | 0.0600 |
| No log        | 21.96 | 66   | 0.5748          | 0.83     | 0.2785     | 1.3558 | 0.83     | 0.8113   | 0.1744 | 0.0529 |
| No log        | 22.96 | 69   | 0.5722          | 0.815    | 0.2756     | 1.3937 | 0.815    | 0.8097   | 0.1767 | 0.0489 |
| No log        | 23.96 | 72   | 0.5689          | 0.795    | 0.2750     | 1.3641 | 0.795    | 0.7947   | 0.1452 | 0.0539 |
| No log        | 24.96 | 75   | 0.5536          | 0.825    | 0.2718     | 1.2773 | 0.825    | 0.8068   | 0.1698 | 0.0509 |
| No log        | 25.96 | 78   | 0.5464          | 0.805    | 0.2726     | 1.2772 | 0.805    | 0.7888   | 0.1499 | 0.0487 |
| No log        | 26.96 | 81   | 0.5455          | 0.81     | 0.2626     | 1.3607 | 0.81     | 0.8080   | 0.1750 | 0.0471 |
| No log        | 27.96 | 84   | 0.5542          | 0.815    | 0.2609     | 1.3643 | 0.815    | 0.8089   | 0.1521 | 0.0466 |
| No log        | 28.96 | 87   | 0.5480          | 0.82     | 0.2710     | 1.2996 | 0.82     | 0.8227   | 0.1422 | 0.0468 |
| No log        | 29.96 | 90   | 0.5507          | 0.83     | 0.2654     | 1.3425 | 0.83     | 0.8320   | 0.1491 | 0.0475 |
| No log        | 30.96 | 93   | 0.5608          | 0.815    | 0.2591     | 1.4365 | 0.815    | 0.8145   | 0.1405 | 0.0442 |
| No log        | 31.96 | 96   | 0.5473          | 0.825    | 0.2622     | 1.3600 | 0.825    | 0.8198   | 0.1339 | 0.0424 |
| No log        | 32.96 | 99   | 0.5296          | 0.83     | 0.2588     | 1.2906 | 0.83     | 0.8311   | 0.1373 | 0.0416 |
| No log        | 33.96 | 102  | 0.5370          | 0.82     | 0.2522     | 1.2895 | 0.82     | 0.8214   | 0.1428 | 0.0436 |
| No log        | 34.96 | 105  | 0.5578          | 0.8      | 0.2707     | 1.3364 | 0.8000   | 0.8056   | 0.1708 | 0.0481 |
| No log        | 35.96 | 108  | 0.5193          | 0.825    | 0.2484     | 1.2883 | 0.825    | 0.8250   | 0.1316 | 0.0405 |
| No log        | 36.96 | 111  | 0.5306          | 0.815    | 0.2569     | 1.2856 | 0.815    | 0.8093   | 0.1344 | 0.0420 |
| No log        | 37.96 | 114  | 0.5824          | 0.815    | 0.2729     | 1.3994 | 0.815    | 0.8182   | 0.1418 | 0.0479 |
| No log        | 38.96 | 117  | 0.5486          | 0.82     | 0.2549     | 1.2974 | 0.82     | 0.8259   | 0.1312 | 0.0443 |
| No log        | 39.96 | 120  | 0.5421          | 0.83     | 0.2545     | 1.3575 | 0.83     | 0.8316   | 0.1491 | 0.0415 |
| No log        | 40.96 | 123  | 0.5477          | 0.81     | 0.2700     | 1.3251 | 0.81     | 0.8166   | 0.1499 | 0.0418 |
| No log        | 41.96 | 126  | 0.5404          | 0.825    | 0.2553     | 1.3186 | 0.825    | 0.8309   | 0.1519 | 0.0414 |
| No log        | 42.96 | 129  | 0.5698          | 0.83     | 0.2598     | 1.3249 | 0.83     | 0.8386   | 0.1396 | 0.0452 |
| No log        | 43.96 | 132  | 0.5538          | 0.815    | 0.2605     | 1.3122 | 0.815    | 0.8212   | 0.1410 | 0.0430 |
| No log        | 44.96 | 135  | 0.5369          | 0.81     | 0.2586     | 1.3030 | 0.81     | 0.8141   | 0.1404 | 0.0409 |
| No log        | 45.96 | 138  | 0.5614          | 0.825    | 0.2615     | 1.3881 | 0.825    | 0.8278   | 0.1404 | 0.0427 |
| No log        | 46.96 | 141  | 0.5636          | 0.825    | 0.2601     | 1.4077 | 0.825    | 0.8286   | 0.1345 | 0.0421 |
| No log        | 47.96 | 144  | 0.5783          | 0.83     | 0.2684     | 1.3350 | 0.83     | 0.8304   | 0.1373 | 0.0422 |
| No log        | 48.96 | 147  | 0.5749          | 0.825    | 0.2663     | 1.3167 | 0.825    | 0.8241   | 0.1308 | 0.0424 |
| No log        | 49.96 | 150  | 0.5802          | 0.82     | 0.2692     | 1.3191 | 0.82     | 0.8194   | 0.1217 | 0.0461 |
| No log        | 50.96 | 153  | 0.5696          | 0.82     | 0.2639     | 1.3330 | 0.82     | 0.8175   | 0.1372 | 0.0429 |
| No log        | 51.96 | 156  | 0.5827          | 0.84     | 0.2656     | 1.3975 | 0.8400   | 0.8444   | 0.1378 | 0.0426 |
| No log        | 52.96 | 159  | 0.5725          | 0.805    | 0.2669     | 1.3172 | 0.805    | 0.7997   | 0.1459 | 0.0422 |
| No log        | 53.96 | 162  | 0.5769          | 0.805    | 0.2691     | 1.3111 | 0.805    | 0.7991   | 0.1457 | 0.0434 |
| No log        | 54.96 | 165  | 0.5883          | 0.805    | 0.2647     | 1.4581 | 0.805    | 0.8104   | 0.1405 | 0.0430 |
| No log        | 55.96 | 168  | 0.5834          | 0.835    | 0.2543     | 1.4586 | 0.835    | 0.8349   | 0.1346 | 0.0407 |
| No log        | 56.96 | 171  | 0.5875          | 0.835    | 0.2543     | 1.3211 | 0.835    | 0.8358   | 0.1320 | 0.0402 |
| No log        | 57.96 | 174  | 0.5741          | 0.84     | 0.2533     | 1.3027 | 0.8400   | 0.8405   | 0.1290 | 0.0395 |
| No log        | 58.96 | 177  | 0.5737          | 0.82     | 0.2624     | 1.3104 | 0.82     | 0.8167   | 0.1437 | 0.0396 |
| No log        | 59.96 | 180  | 0.5796          | 0.815    | 0.2603     | 1.4021 | 0.815    | 0.8154   | 0.1286 | 0.0406 |
| No log        | 60.96 | 183  | 0.5711          | 0.83     | 0.2553     | 1.4016 | 0.83     | 0.8306   | 0.1272 | 0.0390 |
| No log        | 61.96 | 186  | 0.5670          | 0.825    | 0.2591     | 1.3136 | 0.825    | 0.8263   | 0.1429 | 0.0406 |
| No log        | 62.96 | 189  | 0.5736          | 0.825    | 0.2592     | 1.3077 | 0.825    | 0.8231   | 0.1244 | 0.0417 |
| No log        | 63.96 | 192  | 0.5730          | 0.83     | 0.2531     | 1.3007 | 0.83     | 0.8274   | 0.1275 | 0.0401 |
| No log        | 64.96 | 195  | 0.6130          | 0.82     | 0.2687     | 1.3014 | 0.82     | 0.8246   | 0.1484 | 0.0414 |
| No log        | 65.96 | 198  | 0.6023          | 0.825    | 0.2596     | 1.3107 | 0.825    | 0.8254   | 0.1373 | 0.0404 |
| No log        | 66.96 | 201  | 0.5923          | 0.825    | 0.2599     | 1.3078 | 0.825    | 0.8263   | 0.1312 | 0.0411 |
| No log        | 67.96 | 204  | 0.6197          | 0.81     | 0.2766     | 1.3046 | 0.81     | 0.8035   | 0.1373 | 0.0451 |
| No log        | 68.96 | 207  | 0.5918          | 0.805    | 0.2651     | 1.3019 | 0.805    | 0.8044   | 0.1407 | 0.0404 |
| No log        | 69.96 | 210  | 0.5908          | 0.835    | 0.2544     | 1.3286 | 0.835    | 0.8344   | 0.1354 | 0.0394 |
| No log        | 70.96 | 213  | 0.5941          | 0.83     | 0.2558     | 1.3019 | 0.83     | 0.8324   | 0.1402 | 0.0401 |
| No log        | 71.96 | 216  | 0.5994          | 0.82     | 0.2588     | 1.2998 | 0.82     | 0.8215   | 0.1297 | 0.0411 |
| No log        | 72.96 | 219  | 0.6083          | 0.825    | 0.2638     | 1.3525 | 0.825    | 0.8257   | 0.1379 | 0.0410 |
| No log        | 73.96 | 222  | 0.5980          | 0.825    | 0.2609     | 1.3515 | 0.825    | 0.8295   | 0.1457 | 0.0394 |
| No log        | 74.96 | 225  | 0.5945          | 0.83     | 0.2568     | 1.3670 | 0.83     | 0.8302   | 0.1324 | 0.0390 |
| No log        | 75.96 | 228  | 0.5982          | 0.845    | 0.2535     | 1.4552 | 0.845    | 0.8476   | 0.1246 | 0.0390 |
| No log        | 76.96 | 231  | 0.5850          | 0.83     | 0.2507     | 1.3700 | 0.83     | 0.8287   | 0.1348 | 0.0391 |
| No log        | 77.96 | 234  | 0.5859          | 0.825    | 0.2566     | 1.2917 | 0.825    | 0.8232   | 0.1309 | 0.0394 |
| No log        | 78.96 | 237  | 0.6085          | 0.835    | 0.2630     | 1.3516 | 0.835    | 0.8370   | 0.1329 | 0.0420 |
| No log        | 79.96 | 240  | 0.6108          | 0.835    | 0.2621     | 1.2943 | 0.835    | 0.8370   | 0.1395 | 0.0414 |
| No log        | 80.96 | 243  | 0.6061          | 0.81     | 0.2596     | 1.2898 | 0.81     | 0.8119   | 0.1313 | 0.0413 |
| No log        | 81.96 | 246  | 0.6006          | 0.815    | 0.2564     | 1.2952 | 0.815    | 0.8122   | 0.1453 | 0.0406 |
| No log        | 82.96 | 249  | 0.6050          | 0.825    | 0.2577     | 1.2998 | 0.825    | 0.8283   | 0.1271 | 0.0400 |
| No log        | 83.96 | 252  | 0.6197          | 0.835    | 0.2658     | 1.3021 | 0.835    | 0.8386   | 0.1222 | 0.0414 |
| No log        | 84.96 | 255  | 0.6086          | 0.825    | 0.2651     | 1.2889 | 0.825    | 0.8251   | 0.1207 | 0.0404 |
| No log        | 85.96 | 258  | 0.5965          | 0.83     | 0.2587     | 1.2929 | 0.83     | 0.8304   | 0.1323 | 0.0397 |
| No log        | 86.96 | 261  | 0.5897          | 0.82     | 0.2550     | 1.2980 | 0.82     | 0.8171   | 0.1372 | 0.0394 |
| No log        | 87.96 | 264  | 0.5887          | 0.83     | 0.2551     | 1.2950 | 0.83     | 0.8290   | 0.1251 | 0.0391 |
| No log        | 88.96 | 267  | 0.5958          | 0.82     | 0.2598     | 1.2871 | 0.82     | 0.8180   | 0.1319 | 0.0392 |
| No log        | 89.96 | 270  | 0.6088          | 0.82     | 0.2658     | 1.2805 | 0.82     | 0.8184   | 0.1513 | 0.0396 |
| No log        | 90.96 | 273  | 0.6192          | 0.825    | 0.2692     | 1.2772 | 0.825    | 0.8263   | 0.1258 | 0.0402 |
| No log        | 91.96 | 276  | 0.6230          | 0.825    | 0.2689     | 1.2777 | 0.825    | 0.8263   | 0.1416 | 0.0404 |
| No log        | 92.96 | 279  | 0.6223          | 0.83     | 0.2667     | 1.2792 | 0.83     | 0.8318   | 0.1296 | 0.0401 |
| No log        | 93.96 | 282  | 0.6145          | 0.83     | 0.2627     | 1.2797 | 0.83     | 0.8321   | 0.1265 | 0.0394 |
| No log        | 94.96 | 285  | 0.6105          | 0.83     | 0.2610     | 1.2807 | 0.83     | 0.8321   | 0.1352 | 0.0392 |
| No log        | 95.96 | 288  | 0.6095          | 0.83     | 0.2602     | 1.2815 | 0.83     | 0.8321   | 0.1360 | 0.0390 |
| No log        | 96.96 | 291  | 0.6076          | 0.835    | 0.2590     | 1.2824 | 0.835    | 0.8348   | 0.1255 | 0.0389 |
| No log        | 97.96 | 294  | 0.6060          | 0.835    | 0.2578     | 1.2827 | 0.835    | 0.8348   | 0.1281 | 0.0388 |
| No log        | 98.96 | 297  | 0.6058          | 0.835    | 0.2575     | 1.2825 | 0.835    | 0.8348   | 0.1410 | 0.0387 |
| No log        | 99.96 | 300  | 0.6059          | 0.835    | 0.2576     | 1.2824 | 0.835    | 0.8348   | 0.1310 | 0.0387 |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1.post200
- Datasets 2.9.0
- Tokenizers 0.13.2