Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +161 -0
- checkpoint-129/config.json +26 -0
- checkpoint-129/generation_config.json +7 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-129/global_step129/mp_rank_00_model_states.pt +3 -0
- checkpoint-129/latest +1 -0
- checkpoint-129/model-00001-of-00003.safetensors +3 -0
- checkpoint-129/model-00002-of-00003.safetensors +3 -0
- checkpoint-129/model-00003-of-00003.safetensors +3 -0
- checkpoint-129/model.safetensors.index.json +298 -0
- checkpoint-129/rng_state_0.pth +3 -0
- checkpoint-129/rng_state_1.pth +3 -0
- checkpoint-129/rng_state_2.pth +3 -0
- checkpoint-129/rng_state_3.pth +3 -0
- checkpoint-129/rng_state_4.pth +3 -0
- checkpoint-129/rng_state_5.pth +3 -0
- checkpoint-129/rng_state_6.pth +3 -0
- checkpoint-129/rng_state_7.pth +3 -0
- checkpoint-129/scheduler.pt +3 -0
- checkpoint-129/trainer_state.json +1020 -0
- checkpoint-129/training_args.bin +3 -0
- checkpoint-129/zero_to_fp32.py +592 -0
- checkpoint-172/config.json +26 -0
- checkpoint-172/generation_config.json +7 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- checkpoint-172/global_step172/mp_rank_00_model_states.pt +3 -0
- checkpoint-172/latest +1 -0
- checkpoint-172/model-00001-of-00003.safetensors +3 -0
- checkpoint-172/model-00002-of-00003.safetensors +3 -0
- checkpoint-172/model-00003-of-00003.safetensors +3 -0
- checkpoint-172/model.safetensors.index.json +298 -0
- checkpoint-172/rng_state_0.pth +3 -0
- checkpoint-172/rng_state_1.pth +3 -0
- checkpoint-172/rng_state_2.pth +3 -0
- checkpoint-172/rng_state_3.pth +3 -0
- checkpoint-172/rng_state_4.pth +3 -0
README.md
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: mistral-7B-MedText-epochs-5-lr-000002
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
15 |
+
<details><summary>See axolotl config</summary>
|
16 |
+
|
17 |
+
axolotl version: `0.4.0`
|
18 |
+
```yaml
|
19 |
+
base_model: mistralai/Mistral-7B-v0.1
|
20 |
+
model_type: MistralForCausalLM
|
21 |
+
tokenizer_type: LlamaTokenizer
|
22 |
+
is_mistral_derived_model: true
|
23 |
+
|
24 |
+
load_in_8bit: false
|
25 |
+
load_in_4bit: false
|
26 |
+
strict: false
|
27 |
+
|
28 |
+
datasets:
|
29 |
+
- path: utrgvseniorproject/medtext
|
30 |
+
type: completion
|
31 |
+
dataset_prepared_path: last_run_prepared
|
32 |
+
val_set_size: 0.05
|
33 |
+
output_dir: ./mistral-7B-MedText-epochs-5-lr-000002
|
34 |
+
|
35 |
+
sequence_len: 4096
|
36 |
+
sample_packing: true
|
37 |
+
pad_to_sequence_len: true
|
38 |
+
|
39 |
+
adapter:
|
40 |
+
lora_model_dir:
|
41 |
+
lora_r:
|
42 |
+
lora_alpha:
|
43 |
+
lora_dropout:
|
44 |
+
lora_target_linear:
|
45 |
+
lora_fan_in_fan_out:
|
46 |
+
|
47 |
+
wandb_project: mistral-7B-MedText
|
48 |
+
wandb_entity: utrgvmedai
|
49 |
+
wandb_watch:
|
50 |
+
wandb_name: mistral-7B-MedText-epochs-5-lr-000002
|
51 |
+
wandb_log_model:
|
52 |
+
|
53 |
+
gradient_accumulation_steps: 1
|
54 |
+
micro_batch_size: 1
|
55 |
+
num_epochs: 5
|
56 |
+
optimizer: adamw_bnb_8bit
|
57 |
+
lr_scheduler: cosine
|
58 |
+
learning_rate: 0.000002
|
59 |
+
|
60 |
+
train_on_inputs: true
|
61 |
+
group_by_length: false
|
62 |
+
bf16: auto
|
63 |
+
fp16:
|
64 |
+
tf32: false
|
65 |
+
|
66 |
+
gradient_checkpointing: false
|
67 |
+
early_stopping_patience:
|
68 |
+
#resume_from_checkpoint: true
|
69 |
+
local_rank:
|
70 |
+
logging_steps: 1
|
71 |
+
xformers_attention:
|
72 |
+
flash_attention: true
|
73 |
+
flash_attn_cross_entropy: false
|
74 |
+
flash_attn_rms_norm: true
|
75 |
+
flash_attn_fuse_qkv: false
|
76 |
+
flash_attn_fuse_mlp: true
|
77 |
+
|
78 |
+
warmup_steps: 100
|
79 |
+
evals_per_epoch: 4
|
80 |
+
eval_table_size:
|
81 |
+
eval_sample_packing: False
|
82 |
+
saves_per_epoch: 1
|
83 |
+
debug:
|
84 |
+
deepspeed: /home/josegomez15/axolotl/deepspeed_configs/zero2.json
|
85 |
+
weight_decay: 0.1
|
86 |
+
fsdp:
|
87 |
+
fsdp_config:
|
88 |
+
special_tokens:
|
89 |
+
|
90 |
+
```
|
91 |
+
|
92 |
+
</details><br>
|
93 |
+
|
94 |
+
# mistral-7B-MedText-epochs-5-lr-000002
|
95 |
+
|
96 |
+
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
97 |
+
It achieves the following results on the evaluation set:
|
98 |
+
- Loss: 1.6109
|
99 |
+
|
100 |
+
## Model description
|
101 |
+
|
102 |
+
More information needed
|
103 |
+
|
104 |
+
## Intended uses & limitations
|
105 |
+
|
106 |
+
More information needed
|
107 |
+
|
108 |
+
## Training and evaluation data
|
109 |
+
|
110 |
+
More information needed
|
111 |
+
|
112 |
+
## Training procedure
|
113 |
+
|
114 |
+
### Training hyperparameters
|
115 |
+
|
116 |
+
The following hyperparameters were used during training:
|
117 |
+
- learning_rate: 2e-06
|
118 |
+
- train_batch_size: 1
|
119 |
+
- eval_batch_size: 1
|
120 |
+
- seed: 42
|
121 |
+
- distributed_type: multi-GPU
|
122 |
+
- num_devices: 8
|
123 |
+
- total_train_batch_size: 8
|
124 |
+
- total_eval_batch_size: 8
|
125 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
126 |
+
- lr_scheduler_type: cosine
|
127 |
+
- lr_scheduler_warmup_steps: 100
|
128 |
+
- num_epochs: 5
|
129 |
+
|
130 |
+
### Training results
|
131 |
+
|
132 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
133 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
134 |
+
| 1.5029 | 0.02 | 1 | 1.5677 |
|
135 |
+
| 1.5892 | 0.26 | 11 | 1.5674 |
|
136 |
+
| 1.2975 | 0.51 | 22 | 1.5646 |
|
137 |
+
| 1.6405 | 0.77 | 33 | 1.5585 |
|
138 |
+
| 1.4797 | 1.02 | 44 | 1.5535 |
|
139 |
+
| 1.4285 | 1.23 | 55 | 1.5510 |
|
140 |
+
| 1.565 | 1.49 | 66 | 1.5497 |
|
141 |
+
| 1.2469 | 1.74 | 77 | 1.5485 |
|
142 |
+
| 1.6729 | 2.0 | 88 | 1.5482 |
|
143 |
+
| 1.2883 | 2.23 | 99 | 1.5585 |
|
144 |
+
| 1.2285 | 2.49 | 110 | 1.5651 |
|
145 |
+
| 1.2074 | 2.74 | 121 | 1.5639 |
|
146 |
+
| 1.1427 | 3.0 | 132 | 1.5614 |
|
147 |
+
| 1.1015 | 3.21 | 143 | 1.5898 |
|
148 |
+
| 1.0554 | 3.47 | 154 | 1.5990 |
|
149 |
+
| 1.1675 | 3.72 | 165 | 1.5823 |
|
150 |
+
| 1.0228 | 3.98 | 176 | 1.5949 |
|
151 |
+
| 1.0462 | 4.19 | 187 | 1.6039 |
|
152 |
+
| 1.0623 | 4.44 | 198 | 1.6127 |
|
153 |
+
| 1.1305 | 4.7 | 209 | 1.6109 |
|
154 |
+
|
155 |
+
|
156 |
+
### Framework versions
|
157 |
+
|
158 |
+
- Transformers 4.38.0
|
159 |
+
- Pytorch 2.0.1+cu117
|
160 |
+
- Datasets 2.17.0
|
161 |
+
- Tokenizers 0.15.0
|
checkpoint-129/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
checkpoint-129/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.0"
|
7 |
+
}
|
checkpoint-129/global_step129/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16bede0c5a5f237b1fe8d830ad65db550f542aa327f0dd5ebf3b18c18fa21360
|
3 |
+
size 10862603447
|
checkpoint-129/global_step129/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b9086d02198a0ad91553bafcbbca59c9f1c7e4a435d9341d87b2bd21df714b9
|
3 |
+
size 10862603639
|
checkpoint-129/global_step129/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:66c81bdf2e972c972065942cb35eb926bccbae4dcdc557a6d6d1777d19149450
|
3 |
+
size 10862603767
|
checkpoint-129/global_step129/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d126935f948a4c3ca602b2371b6abd41f7106066f49d93698956fa84783f90cd
|
3 |
+
size 10862603895
|
checkpoint-129/global_step129/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2262f1ef22fd16c1f27694c605ee3bb3f8793ce7b439bf294a6675798feee0d2
|
3 |
+
size 10862603895
|
checkpoint-129/global_step129/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:286463e3e0ca09f62255fc50cac898ed08b46a0160cd4387656783a0063e8fb7
|
3 |
+
size 10862603767
|
checkpoint-129/global_step129/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11e09828974baa7fe8a15f6589bbd5d8ea294739108d3d5d43627cb71dac4946
|
3 |
+
size 10862603703
|
checkpoint-129/global_step129/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48fdb2026bc468c3eb849c6d1d98630fe0e822abb3a6eb14796d45a7ef97a460
|
3 |
+
size 10862603447
|
checkpoint-129/global_step129/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d9b10763c792ecbfeb83544afb8cc2070b8528daf7bc6ef8704583a1e48e9377
|
3 |
+
size 14483551747
|
checkpoint-129/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step129
|
checkpoint-129/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00d57e21c5175e475b131c0abc55969b087c8db5f917328a8098b092f9304b03
|
3 |
+
size 4943162336
|
checkpoint-129/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:623f4f357e3be5091e798b58e682e50ac395907c55c8a11c928c05e9a0f09bf4
|
3 |
+
size 4999819336
|
checkpoint-129/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6059de93147ff69ff38151d3012ea53b93aedf093820cf02f30581fef6df98f
|
3 |
+
size 4540516344
|
checkpoint-129/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-129/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4077b34b03f79b052bd53a09b269b2df2b9b4edbba886d14e19bc0ff6508ab00
|
3 |
+
size 21687
|
checkpoint-129/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d6fc2e3e4688f0af35b81181a28d78078f10a4e63237915ef2e25612318a5b3
|
3 |
+
size 21687
|
checkpoint-129/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b48f9dd20406c2f7ee61d289c703091bfb05aca0d3d4bc461fec41b66d43bfa5
|
3 |
+
size 21687
|
checkpoint-129/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a513659dd182753b05daade475bbf0a51cfafbb0119721a6e1b8d60c45dacdb1
|
3 |
+
size 21687
|
checkpoint-129/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:130f08688b3d017d9a1c2ac8ef50fa6d9637aa718b7ae19c54fd23cfd35490c2
|
3 |
+
size 21687
|
checkpoint-129/rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:22929ee481c4bff4217495b52b918cafcda752ff40c793ba1081d43d57f7fa58
|
3 |
+
size 21687
|
checkpoint-129/rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:98553316d85e76503cf36b5f7bf067dd5c1d3db5fda7842498a035a54c847a32
|
3 |
+
size 21687
|
checkpoint-129/rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6d3a685adbcf6a9447697719aec403e5cd0262aa6decadfb656356ede6df4e8
|
3 |
+
size 21687
|
checkpoint-129/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:346abd668b19f49db42ab4cadcd928a9eb2d18fdae723fa1ed0d48b105a21b16
|
3 |
+
size 627
|
checkpoint-129/trainer_state.json
ADDED
@@ -0,0 +1,1020 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 2.9302325581395348,
|
5 |
+
"eval_steps": 11,
|
6 |
+
"global_step": 129,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 22.073590049775476,
|
14 |
+
"learning_rate": 2e-08,
|
15 |
+
"loss": 1.5029,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.02,
|
20 |
+
"eval_loss": 1.5676738023757935,
|
21 |
+
"eval_runtime": 1.7229,
|
22 |
+
"eval_samples_per_second": 11.028,
|
23 |
+
"eval_steps_per_second": 1.741,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.05,
|
28 |
+
"grad_norm": 21.339319978585014,
|
29 |
+
"learning_rate": 4e-08,
|
30 |
+
"loss": 1.5411,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.07,
|
35 |
+
"grad_norm": 21.89138128266215,
|
36 |
+
"learning_rate": 6e-08,
|
37 |
+
"loss": 1.535,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.09,
|
42 |
+
"grad_norm": 35.68832946989201,
|
43 |
+
"learning_rate": 8e-08,
|
44 |
+
"loss": 1.4248,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.12,
|
49 |
+
"grad_norm": 18.922589465764027,
|
50 |
+
"learning_rate": 1e-07,
|
51 |
+
"loss": 1.512,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.14,
|
56 |
+
"grad_norm": 22.05229837285426,
|
57 |
+
"learning_rate": 1.2e-07,
|
58 |
+
"loss": 1.5849,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.16,
|
63 |
+
"grad_norm": 29.050954317842017,
|
64 |
+
"learning_rate": 1.4e-07,
|
65 |
+
"loss": 1.4915,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.19,
|
70 |
+
"grad_norm": 16.415909544756897,
|
71 |
+
"learning_rate": 1.6e-07,
|
72 |
+
"loss": 1.4711,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.21,
|
77 |
+
"grad_norm": 24.72099068344741,
|
78 |
+
"learning_rate": 1.8e-07,
|
79 |
+
"loss": 1.5618,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.23,
|
84 |
+
"grad_norm": 15.495802280155232,
|
85 |
+
"learning_rate": 2e-07,
|
86 |
+
"loss": 1.5432,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.26,
|
91 |
+
"grad_norm": 15.385087340525107,
|
92 |
+
"learning_rate": 2.1999999999999998e-07,
|
93 |
+
"loss": 1.5892,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.26,
|
98 |
+
"eval_loss": 1.5673789978027344,
|
99 |
+
"eval_runtime": 0.7198,
|
100 |
+
"eval_samples_per_second": 26.396,
|
101 |
+
"eval_steps_per_second": 4.168,
|
102 |
+
"step": 11
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"epoch": 0.28,
|
106 |
+
"grad_norm": 18.316263378494824,
|
107 |
+
"learning_rate": 2.4e-07,
|
108 |
+
"loss": 1.5068,
|
109 |
+
"step": 12
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.3,
|
113 |
+
"grad_norm": 16.604978508847786,
|
114 |
+
"learning_rate": 2.6e-07,
|
115 |
+
"loss": 1.5079,
|
116 |
+
"step": 13
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.33,
|
120 |
+
"grad_norm": 19.088434906193037,
|
121 |
+
"learning_rate": 2.8e-07,
|
122 |
+
"loss": 1.3923,
|
123 |
+
"step": 14
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.35,
|
127 |
+
"grad_norm": 13.367337607829006,
|
128 |
+
"learning_rate": 3e-07,
|
129 |
+
"loss": 1.4215,
|
130 |
+
"step": 15
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.37,
|
134 |
+
"grad_norm": 14.12443554856015,
|
135 |
+
"learning_rate": 3.2e-07,
|
136 |
+
"loss": 1.5182,
|
137 |
+
"step": 16
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.4,
|
141 |
+
"grad_norm": 21.547074702210885,
|
142 |
+
"learning_rate": 3.4000000000000003e-07,
|
143 |
+
"loss": 1.6407,
|
144 |
+
"step": 17
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.42,
|
148 |
+
"grad_norm": 19.983618321532845,
|
149 |
+
"learning_rate": 3.6e-07,
|
150 |
+
"loss": 1.6124,
|
151 |
+
"step": 18
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.44,
|
155 |
+
"grad_norm": 14.12870699420598,
|
156 |
+
"learning_rate": 3.7999999999999996e-07,
|
157 |
+
"loss": 1.3535,
|
158 |
+
"step": 19
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.47,
|
162 |
+
"grad_norm": 17.73177207632663,
|
163 |
+
"learning_rate": 4e-07,
|
164 |
+
"loss": 1.4723,
|
165 |
+
"step": 20
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.49,
|
169 |
+
"grad_norm": 24.017411591807985,
|
170 |
+
"learning_rate": 4.1999999999999995e-07,
|
171 |
+
"loss": 1.3109,
|
172 |
+
"step": 21
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.51,
|
176 |
+
"grad_norm": 15.47289342392699,
|
177 |
+
"learning_rate": 4.3999999999999997e-07,
|
178 |
+
"loss": 1.2975,
|
179 |
+
"step": 22
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.51,
|
183 |
+
"eval_loss": 1.5646436214447021,
|
184 |
+
"eval_runtime": 0.7176,
|
185 |
+
"eval_samples_per_second": 26.478,
|
186 |
+
"eval_steps_per_second": 4.181,
|
187 |
+
"step": 22
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.53,
|
191 |
+
"grad_norm": 21.160644074933437,
|
192 |
+
"learning_rate": 4.6e-07,
|
193 |
+
"loss": 1.5044,
|
194 |
+
"step": 23
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"epoch": 0.56,
|
198 |
+
"grad_norm": 15.065995566576719,
|
199 |
+
"learning_rate": 4.8e-07,
|
200 |
+
"loss": 1.4756,
|
201 |
+
"step": 24
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.58,
|
205 |
+
"grad_norm": 17.05786606459713,
|
206 |
+
"learning_rate": 5e-07,
|
207 |
+
"loss": 1.4934,
|
208 |
+
"step": 25
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.6,
|
212 |
+
"grad_norm": 15.821412963269017,
|
213 |
+
"learning_rate": 5.2e-07,
|
214 |
+
"loss": 1.6885,
|
215 |
+
"step": 26
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.63,
|
219 |
+
"grad_norm": 17.42199498977738,
|
220 |
+
"learning_rate": 5.4e-07,
|
221 |
+
"loss": 1.3696,
|
222 |
+
"step": 27
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 0.65,
|
226 |
+
"grad_norm": 17.118541529912182,
|
227 |
+
"learning_rate": 5.6e-07,
|
228 |
+
"loss": 1.4963,
|
229 |
+
"step": 28
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.67,
|
233 |
+
"grad_norm": 16.14285401779511,
|
234 |
+
"learning_rate": 5.8e-07,
|
235 |
+
"loss": 1.523,
|
236 |
+
"step": 29
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.7,
|
240 |
+
"grad_norm": 14.413715273595537,
|
241 |
+
"learning_rate": 6e-07,
|
242 |
+
"loss": 1.4205,
|
243 |
+
"step": 30
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.72,
|
247 |
+
"grad_norm": 15.696143212367938,
|
248 |
+
"learning_rate": 6.2e-07,
|
249 |
+
"loss": 1.417,
|
250 |
+
"step": 31
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.74,
|
254 |
+
"grad_norm": 18.422902888255102,
|
255 |
+
"learning_rate": 6.4e-07,
|
256 |
+
"loss": 1.513,
|
257 |
+
"step": 32
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.77,
|
261 |
+
"grad_norm": 15.348458059196757,
|
262 |
+
"learning_rate": 6.6e-07,
|
263 |
+
"loss": 1.6405,
|
264 |
+
"step": 33
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.77,
|
268 |
+
"eval_loss": 1.558524489402771,
|
269 |
+
"eval_runtime": 0.7067,
|
270 |
+
"eval_samples_per_second": 26.885,
|
271 |
+
"eval_steps_per_second": 4.245,
|
272 |
+
"step": 33
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"epoch": 0.79,
|
276 |
+
"grad_norm": 31.510016892264296,
|
277 |
+
"learning_rate": 6.800000000000001e-07,
|
278 |
+
"loss": 1.395,
|
279 |
+
"step": 34
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.81,
|
283 |
+
"grad_norm": 15.63296379080965,
|
284 |
+
"learning_rate": 7e-07,
|
285 |
+
"loss": 1.5409,
|
286 |
+
"step": 35
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.84,
|
290 |
+
"grad_norm": 15.627218592491115,
|
291 |
+
"learning_rate": 7.2e-07,
|
292 |
+
"loss": 1.3137,
|
293 |
+
"step": 36
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.86,
|
297 |
+
"grad_norm": 15.337191607694441,
|
298 |
+
"learning_rate": 7.4e-07,
|
299 |
+
"loss": 1.7298,
|
300 |
+
"step": 37
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 0.88,
|
304 |
+
"grad_norm": 16.11020188378557,
|
305 |
+
"learning_rate": 7.599999999999999e-07,
|
306 |
+
"loss": 1.403,
|
307 |
+
"step": 38
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.91,
|
311 |
+
"grad_norm": 19.261102026351743,
|
312 |
+
"learning_rate": 7.799999999999999e-07,
|
313 |
+
"loss": 1.5199,
|
314 |
+
"step": 39
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.93,
|
318 |
+
"grad_norm": 15.249059429242267,
|
319 |
+
"learning_rate": 8e-07,
|
320 |
+
"loss": 1.5028,
|
321 |
+
"step": 40
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.95,
|
325 |
+
"grad_norm": 17.026025037114596,
|
326 |
+
"learning_rate": 8.199999999999999e-07,
|
327 |
+
"loss": 1.5746,
|
328 |
+
"step": 41
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.98,
|
332 |
+
"grad_norm": 20.241389951964763,
|
333 |
+
"learning_rate": 8.399999999999999e-07,
|
334 |
+
"loss": 1.5432,
|
335 |
+
"step": 42
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 1.0,
|
339 |
+
"grad_norm": 13.357942060394901,
|
340 |
+
"learning_rate": 8.599999999999999e-07,
|
341 |
+
"loss": 1.3017,
|
342 |
+
"step": 43
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 1.02,
|
346 |
+
"grad_norm": 19.122899956188,
|
347 |
+
"learning_rate": 8.799999999999999e-07,
|
348 |
+
"loss": 1.4797,
|
349 |
+
"step": 44
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 1.02,
|
353 |
+
"eval_loss": 1.5534765720367432,
|
354 |
+
"eval_runtime": 0.7056,
|
355 |
+
"eval_samples_per_second": 26.926,
|
356 |
+
"eval_steps_per_second": 4.251,
|
357 |
+
"step": 44
|
358 |
+
},
|
359 |
+
{
|
360 |
+
"epoch": 1.05,
|
361 |
+
"grad_norm": 12.993274416162807,
|
362 |
+
"learning_rate": 9e-07,
|
363 |
+
"loss": 1.3812,
|
364 |
+
"step": 45
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"epoch": 1.02,
|
368 |
+
"grad_norm": 15.57715477404305,
|
369 |
+
"learning_rate": 9.2e-07,
|
370 |
+
"loss": 1.5169,
|
371 |
+
"step": 46
|
372 |
+
},
|
373 |
+
{
|
374 |
+
"epoch": 1.05,
|
375 |
+
"grad_norm": 15.047562025949741,
|
376 |
+
"learning_rate": 9.399999999999999e-07,
|
377 |
+
"loss": 1.597,
|
378 |
+
"step": 47
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"epoch": 1.07,
|
382 |
+
"grad_norm": 13.154118671073913,
|
383 |
+
"learning_rate": 9.6e-07,
|
384 |
+
"loss": 1.4144,
|
385 |
+
"step": 48
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 1.09,
|
389 |
+
"grad_norm": 17.445553030977283,
|
390 |
+
"learning_rate": 9.8e-07,
|
391 |
+
"loss": 1.5843,
|
392 |
+
"step": 49
|
393 |
+
},
|
394 |
+
{
|
395 |
+
"epoch": 1.12,
|
396 |
+
"grad_norm": 11.552943553949452,
|
397 |
+
"learning_rate": 1e-06,
|
398 |
+
"loss": 1.3343,
|
399 |
+
"step": 50
|
400 |
+
},
|
401 |
+
{
|
402 |
+
"epoch": 1.14,
|
403 |
+
"grad_norm": 14.151856403767372,
|
404 |
+
"learning_rate": 1.02e-06,
|
405 |
+
"loss": 1.428,
|
406 |
+
"step": 51
|
407 |
+
},
|
408 |
+
{
|
409 |
+
"epoch": 1.16,
|
410 |
+
"grad_norm": 12.579639490538433,
|
411 |
+
"learning_rate": 1.04e-06,
|
412 |
+
"loss": 1.4277,
|
413 |
+
"step": 52
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"epoch": 1.19,
|
417 |
+
"grad_norm": 13.03970026338736,
|
418 |
+
"learning_rate": 1.06e-06,
|
419 |
+
"loss": 1.3097,
|
420 |
+
"step": 53
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"epoch": 1.21,
|
424 |
+
"grad_norm": 18.55159266953034,
|
425 |
+
"learning_rate": 1.08e-06,
|
426 |
+
"loss": 1.4071,
|
427 |
+
"step": 54
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 1.23,
|
431 |
+
"grad_norm": 17.185477508845405,
|
432 |
+
"learning_rate": 1.1e-06,
|
433 |
+
"loss": 1.4285,
|
434 |
+
"step": 55
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"epoch": 1.23,
|
438 |
+
"eval_loss": 1.5510258674621582,
|
439 |
+
"eval_runtime": 0.7063,
|
440 |
+
"eval_samples_per_second": 26.902,
|
441 |
+
"eval_steps_per_second": 4.248,
|
442 |
+
"step": 55
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"epoch": 1.26,
|
446 |
+
"grad_norm": 12.433682723330731,
|
447 |
+
"learning_rate": 1.12e-06,
|
448 |
+
"loss": 1.4209,
|
449 |
+
"step": 56
|
450 |
+
},
|
451 |
+
{
|
452 |
+
"epoch": 1.28,
|
453 |
+
"grad_norm": 17.533881821169835,
|
454 |
+
"learning_rate": 1.1399999999999999e-06,
|
455 |
+
"loss": 1.1525,
|
456 |
+
"step": 57
|
457 |
+
},
|
458 |
+
{
|
459 |
+
"epoch": 1.3,
|
460 |
+
"grad_norm": 21.371274746194803,
|
461 |
+
"learning_rate": 1.16e-06,
|
462 |
+
"loss": 1.4803,
|
463 |
+
"step": 58
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"epoch": 1.33,
|
467 |
+
"grad_norm": 12.91252932992948,
|
468 |
+
"learning_rate": 1.18e-06,
|
469 |
+
"loss": 1.342,
|
470 |
+
"step": 59
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"epoch": 1.35,
|
474 |
+
"grad_norm": 15.301368123637772,
|
475 |
+
"learning_rate": 1.2e-06,
|
476 |
+
"loss": 1.3903,
|
477 |
+
"step": 60
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 1.37,
|
481 |
+
"grad_norm": 20.669912185962247,
|
482 |
+
"learning_rate": 1.22e-06,
|
483 |
+
"loss": 1.3419,
|
484 |
+
"step": 61
|
485 |
+
},
|
486 |
+
{
|
487 |
+
"epoch": 1.4,
|
488 |
+
"grad_norm": 14.306797274099731,
|
489 |
+
"learning_rate": 1.24e-06,
|
490 |
+
"loss": 1.3697,
|
491 |
+
"step": 62
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 1.42,
|
495 |
+
"grad_norm": 14.399414559225576,
|
496 |
+
"learning_rate": 1.26e-06,
|
497 |
+
"loss": 1.4607,
|
498 |
+
"step": 63
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"epoch": 1.44,
|
502 |
+
"grad_norm": 14.679866284169409,
|
503 |
+
"learning_rate": 1.28e-06,
|
504 |
+
"loss": 1.4576,
|
505 |
+
"step": 64
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"epoch": 1.47,
|
509 |
+
"grad_norm": 15.66686870904599,
|
510 |
+
"learning_rate": 1.3e-06,
|
511 |
+
"loss": 1.4088,
|
512 |
+
"step": 65
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 1.49,
|
516 |
+
"grad_norm": 15.299128708308798,
|
517 |
+
"learning_rate": 1.32e-06,
|
518 |
+
"loss": 1.565,
|
519 |
+
"step": 66
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"epoch": 1.49,
|
523 |
+
"eval_loss": 1.5496699810028076,
|
524 |
+
"eval_runtime": 0.7108,
|
525 |
+
"eval_samples_per_second": 26.732,
|
526 |
+
"eval_steps_per_second": 4.221,
|
527 |
+
"step": 66
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 1.51,
|
531 |
+
"grad_norm": 17.72956466975166,
|
532 |
+
"learning_rate": 1.34e-06,
|
533 |
+
"loss": 1.5139,
|
534 |
+
"step": 67
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 1.53,
|
538 |
+
"grad_norm": 12.468931115539235,
|
539 |
+
"learning_rate": 1.3600000000000001e-06,
|
540 |
+
"loss": 1.4851,
|
541 |
+
"step": 68
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 1.56,
|
545 |
+
"grad_norm": 18.51314016158734,
|
546 |
+
"learning_rate": 1.38e-06,
|
547 |
+
"loss": 1.3645,
|
548 |
+
"step": 69
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 1.58,
|
552 |
+
"grad_norm": 14.247910195754642,
|
553 |
+
"learning_rate": 1.4e-06,
|
554 |
+
"loss": 1.3199,
|
555 |
+
"step": 70
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 1.6,
|
559 |
+
"grad_norm": 14.996917407863565,
|
560 |
+
"learning_rate": 1.42e-06,
|
561 |
+
"loss": 1.5712,
|
562 |
+
"step": 71
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 1.63,
|
566 |
+
"grad_norm": 13.685317610155064,
|
567 |
+
"learning_rate": 1.44e-06,
|
568 |
+
"loss": 1.37,
|
569 |
+
"step": 72
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 1.65,
|
573 |
+
"grad_norm": 20.67582737513748,
|
574 |
+
"learning_rate": 1.46e-06,
|
575 |
+
"loss": 1.5281,
|
576 |
+
"step": 73
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 1.67,
|
580 |
+
"grad_norm": 24.21873361894607,
|
581 |
+
"learning_rate": 1.48e-06,
|
582 |
+
"loss": 1.5432,
|
583 |
+
"step": 74
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 1.7,
|
587 |
+
"grad_norm": 18.530551736423014,
|
588 |
+
"learning_rate": 1.5e-06,
|
589 |
+
"loss": 1.5514,
|
590 |
+
"step": 75
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 1.72,
|
594 |
+
"grad_norm": 13.006185380590916,
|
595 |
+
"learning_rate": 1.5199999999999998e-06,
|
596 |
+
"loss": 1.3638,
|
597 |
+
"step": 76
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 1.74,
|
601 |
+
"grad_norm": 16.338789878308003,
|
602 |
+
"learning_rate": 1.5399999999999999e-06,
|
603 |
+
"loss": 1.2469,
|
604 |
+
"step": 77
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 1.74,
|
608 |
+
"eval_loss": 1.5485225915908813,
|
609 |
+
"eval_runtime": 0.7202,
|
610 |
+
"eval_samples_per_second": 26.383,
|
611 |
+
"eval_steps_per_second": 4.166,
|
612 |
+
"step": 77
|
613 |
+
},
|
614 |
+
{
|
615 |
+
"epoch": 1.77,
|
616 |
+
"grad_norm": 12.226940015138254,
|
617 |
+
"learning_rate": 1.5599999999999999e-06,
|
618 |
+
"loss": 1.2613,
|
619 |
+
"step": 78
|
620 |
+
},
|
621 |
+
{
|
622 |
+
"epoch": 1.79,
|
623 |
+
"grad_norm": 16.35044079107655,
|
624 |
+
"learning_rate": 1.58e-06,
|
625 |
+
"loss": 1.3039,
|
626 |
+
"step": 79
|
627 |
+
},
|
628 |
+
{
|
629 |
+
"epoch": 1.81,
|
630 |
+
"grad_norm": 16.425588490991444,
|
631 |
+
"learning_rate": 1.6e-06,
|
632 |
+
"loss": 1.5878,
|
633 |
+
"step": 80
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 1.84,
|
637 |
+
"grad_norm": 23.31190960420298,
|
638 |
+
"learning_rate": 1.62e-06,
|
639 |
+
"loss": 1.1774,
|
640 |
+
"step": 81
|
641 |
+
},
|
642 |
+
{
|
643 |
+
"epoch": 1.86,
|
644 |
+
"grad_norm": 12.69134252831033,
|
645 |
+
"learning_rate": 1.6399999999999998e-06,
|
646 |
+
"loss": 1.2935,
|
647 |
+
"step": 82
|
648 |
+
},
|
649 |
+
{
|
650 |
+
"epoch": 1.88,
|
651 |
+
"grad_norm": 14.81387052352272,
|
652 |
+
"learning_rate": 1.6599999999999998e-06,
|
653 |
+
"loss": 1.2247,
|
654 |
+
"step": 83
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"epoch": 1.91,
|
658 |
+
"grad_norm": 12.705757722264147,
|
659 |
+
"learning_rate": 1.6799999999999998e-06,
|
660 |
+
"loss": 1.4163,
|
661 |
+
"step": 84
|
662 |
+
},
|
663 |
+
{
|
664 |
+
"epoch": 1.93,
|
665 |
+
"grad_norm": 15.14994784808861,
|
666 |
+
"learning_rate": 1.6999999999999998e-06,
|
667 |
+
"loss": 1.329,
|
668 |
+
"step": 85
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"epoch": 1.95,
|
672 |
+
"grad_norm": 25.616427443741422,
|
673 |
+
"learning_rate": 1.7199999999999998e-06,
|
674 |
+
"loss": 1.3684,
|
675 |
+
"step": 86
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 1.98,
|
679 |
+
"grad_norm": 14.45050387972439,
|
680 |
+
"learning_rate": 1.7399999999999999e-06,
|
681 |
+
"loss": 1.4462,
|
682 |
+
"step": 87
|
683 |
+
},
|
684 |
+
{
|
685 |
+
"epoch": 2.0,
|
686 |
+
"grad_norm": 21.186429067007214,
|
687 |
+
"learning_rate": 1.7599999999999999e-06,
|
688 |
+
"loss": 1.6729,
|
689 |
+
"step": 88
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 2.0,
|
693 |
+
"eval_loss": 1.5481523275375366,
|
694 |
+
"eval_runtime": 0.7439,
|
695 |
+
"eval_samples_per_second": 25.543,
|
696 |
+
"eval_steps_per_second": 4.033,
|
697 |
+
"step": 88
|
698 |
+
},
|
699 |
+
{
|
700 |
+
"epoch": 2.02,
|
701 |
+
"grad_norm": 16.215693014828933,
|
702 |
+
"learning_rate": 1.78e-06,
|
703 |
+
"loss": 1.399,
|
704 |
+
"step": 89
|
705 |
+
},
|
706 |
+
{
|
707 |
+
"epoch": 2.02,
|
708 |
+
"grad_norm": 16.266362330190216,
|
709 |
+
"learning_rate": 1.8e-06,
|
710 |
+
"loss": 1.4634,
|
711 |
+
"step": 90
|
712 |
+
},
|
713 |
+
{
|
714 |
+
"epoch": 2.05,
|
715 |
+
"grad_norm": 11.670525775431027,
|
716 |
+
"learning_rate": 1.82e-06,
|
717 |
+
"loss": 1.2869,
|
718 |
+
"step": 91
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 2.07,
|
722 |
+
"grad_norm": 19.036151423939565,
|
723 |
+
"learning_rate": 1.84e-06,
|
724 |
+
"loss": 1.4018,
|
725 |
+
"step": 92
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 2.09,
|
729 |
+
"grad_norm": 12.989617529943626,
|
730 |
+
"learning_rate": 1.86e-06,
|
731 |
+
"loss": 1.354,
|
732 |
+
"step": 93
|
733 |
+
},
|
734 |
+
{
|
735 |
+
"epoch": 2.12,
|
736 |
+
"grad_norm": 13.461044054279371,
|
737 |
+
"learning_rate": 1.8799999999999998e-06,
|
738 |
+
"loss": 1.1984,
|
739 |
+
"step": 94
|
740 |
+
},
|
741 |
+
{
|
742 |
+
"epoch": 2.14,
|
743 |
+
"grad_norm": 15.14966533026854,
|
744 |
+
"learning_rate": 1.8999999999999998e-06,
|
745 |
+
"loss": 1.2233,
|
746 |
+
"step": 95
|
747 |
+
},
|
748 |
+
{
|
749 |
+
"epoch": 2.16,
|
750 |
+
"grad_norm": 16.64522841989231,
|
751 |
+
"learning_rate": 1.92e-06,
|
752 |
+
"loss": 1.2439,
|
753 |
+
"step": 96
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"epoch": 2.19,
|
757 |
+
"grad_norm": 15.286892650701205,
|
758 |
+
"learning_rate": 1.94e-06,
|
759 |
+
"loss": 1.312,
|
760 |
+
"step": 97
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"epoch": 2.21,
|
764 |
+
"grad_norm": 17.83944388305422,
|
765 |
+
"learning_rate": 1.96e-06,
|
766 |
+
"loss": 1.4154,
|
767 |
+
"step": 98
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"epoch": 2.23,
|
771 |
+
"grad_norm": 19.7098985928153,
|
772 |
+
"learning_rate": 1.98e-06,
|
773 |
+
"loss": 1.2883,
|
774 |
+
"step": 99
|
775 |
+
},
|
776 |
+
{
|
777 |
+
"epoch": 2.23,
|
778 |
+
"eval_loss": 1.5585265159606934,
|
779 |
+
"eval_runtime": 0.7291,
|
780 |
+
"eval_samples_per_second": 26.059,
|
781 |
+
"eval_steps_per_second": 4.115,
|
782 |
+
"step": 99
|
783 |
+
},
|
784 |
+
{
|
785 |
+
"epoch": 2.26,
|
786 |
+
"grad_norm": 12.323486383746712,
|
787 |
+
"learning_rate": 2e-06,
|
788 |
+
"loss": 1.2074,
|
789 |
+
"step": 100
|
790 |
+
},
|
791 |
+
{
|
792 |
+
"epoch": 2.28,
|
793 |
+
"grad_norm": 12.53366621130023,
|
794 |
+
"learning_rate": 1.9996268812619105e-06,
|
795 |
+
"loss": 1.2052,
|
796 |
+
"step": 101
|
797 |
+
},
|
798 |
+
{
|
799 |
+
"epoch": 2.3,
|
800 |
+
"grad_norm": 13.525403457800772,
|
801 |
+
"learning_rate": 1.998507803482828e-06,
|
802 |
+
"loss": 1.443,
|
803 |
+
"step": 102
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 2.33,
|
807 |
+
"grad_norm": 21.496984225945436,
|
808 |
+
"learning_rate": 1.9966436017605294e-06,
|
809 |
+
"loss": 1.2814,
|
810 |
+
"step": 103
|
811 |
+
},
|
812 |
+
{
|
813 |
+
"epoch": 2.35,
|
814 |
+
"grad_norm": 13.853473081890478,
|
815 |
+
"learning_rate": 1.9940356672322033e-06,
|
816 |
+
"loss": 1.1953,
|
817 |
+
"step": 104
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 2.37,
|
821 |
+
"grad_norm": 16.848081467071964,
|
822 |
+
"learning_rate": 1.9906859460363304e-06,
|
823 |
+
"loss": 1.079,
|
824 |
+
"step": 105
|
825 |
+
},
|
826 |
+
{
|
827 |
+
"epoch": 2.4,
|
828 |
+
"grad_norm": 18.08619313399252,
|
829 |
+
"learning_rate": 1.986596937860402e-06,
|
830 |
+
"loss": 1.1758,
|
831 |
+
"step": 106
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 2.42,
|
835 |
+
"grad_norm": 30.916344763492923,
|
836 |
+
"learning_rate": 1.9817716940755586e-06,
|
837 |
+
"loss": 1.2324,
|
838 |
+
"step": 107
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"epoch": 2.44,
|
842 |
+
"grad_norm": 17.258511861961132,
|
843 |
+
"learning_rate": 1.9762138154595447e-06,
|
844 |
+
"loss": 1.1936,
|
845 |
+
"step": 108
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 2.47,
|
849 |
+
"grad_norm": 24.524385733499397,
|
850 |
+
"learning_rate": 1.969927449509671e-06,
|
851 |
+
"loss": 1.2165,
|
852 |
+
"step": 109
|
853 |
+
},
|
854 |
+
{
|
855 |
+
"epoch": 2.49,
|
856 |
+
"grad_norm": 26.715644236526586,
|
857 |
+
"learning_rate": 1.9629172873477994e-06,
|
858 |
+
"loss": 1.2285,
|
859 |
+
"step": 110
|
860 |
+
},
|
861 |
+
{
|
862 |
+
"epoch": 2.49,
|
863 |
+
"eval_loss": 1.5651321411132812,
|
864 |
+
"eval_runtime": 0.7146,
|
865 |
+
"eval_samples_per_second": 26.587,
|
866 |
+
"eval_steps_per_second": 4.198,
|
867 |
+
"step": 110
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 2.51,
|
871 |
+
"grad_norm": 17.531011515200536,
|
872 |
+
"learning_rate": 1.955188560219648e-06,
|
873 |
+
"loss": 1.4038,
|
874 |
+
"step": 111
|
875 |
+
},
|
876 |
+
{
|
877 |
+
"epoch": 2.53,
|
878 |
+
"grad_norm": 18.16843193413544,
|
879 |
+
"learning_rate": 1.9467470355910435e-06,
|
880 |
+
"loss": 1.1457,
|
881 |
+
"step": 112
|
882 |
+
},
|
883 |
+
{
|
884 |
+
"epoch": 2.56,
|
885 |
+
"grad_norm": 18.30477919577972,
|
886 |
+
"learning_rate": 1.93759901284402e-06,
|
887 |
+
"loss": 1.3241,
|
888 |
+
"step": 113
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 2.58,
|
892 |
+
"grad_norm": 15.24159083916747,
|
893 |
+
"learning_rate": 1.9277513185759843e-06,
|
894 |
+
"loss": 1.1836,
|
895 |
+
"step": 114
|
896 |
+
},
|
897 |
+
{
|
898 |
+
"epoch": 2.6,
|
899 |
+
"grad_norm": 17.98268651120172,
|
900 |
+
"learning_rate": 1.9172113015054528e-06,
|
901 |
+
"loss": 1.3287,
|
902 |
+
"step": 115
|
903 |
+
},
|
904 |
+
{
|
905 |
+
"epoch": 2.63,
|
906 |
+
"grad_norm": 19.765482182043318,
|
907 |
+
"learning_rate": 1.9059868269881636e-06,
|
908 |
+
"loss": 1.2563,
|
909 |
+
"step": 116
|
910 |
+
},
|
911 |
+
{
|
912 |
+
"epoch": 2.65,
|
913 |
+
"grad_norm": 15.321519585287346,
|
914 |
+
"learning_rate": 1.894086271147651e-06,
|
915 |
+
"loss": 1.333,
|
916 |
+
"step": 117
|
917 |
+
},
|
918 |
+
{
|
919 |
+
"epoch": 2.67,
|
920 |
+
"grad_norm": 15.240451512494225,
|
921 |
+
"learning_rate": 1.8815185146246715e-06,
|
922 |
+
"loss": 1.303,
|
923 |
+
"step": 118
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 2.7,
|
927 |
+
"grad_norm": 26.618086369471722,
|
928 |
+
"learning_rate": 1.8682929359501337e-06,
|
929 |
+
"loss": 1.1407,
|
930 |
+
"step": 119
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 2.72,
|
934 |
+
"grad_norm": 16.760378227245127,
|
935 |
+
"learning_rate": 1.8544194045464886e-06,
|
936 |
+
"loss": 1.3433,
|
937 |
+
"step": 120
|
938 |
+
},
|
939 |
+
{
|
940 |
+
"epoch": 2.74,
|
941 |
+
"grad_norm": 15.731131741212232,
|
942 |
+
"learning_rate": 1.8399082733627965e-06,
|
943 |
+
"loss": 1.2074,
|
944 |
+
"step": 121
|
945 |
+
},
|
946 |
+
{
|
947 |
+
"epoch": 2.74,
|
948 |
+
"eval_loss": 1.563856601715088,
|
949 |
+
"eval_runtime": 0.7192,
|
950 |
+
"eval_samples_per_second": 26.42,
|
951 |
+
"eval_steps_per_second": 4.172,
|
952 |
+
"step": 121
|
953 |
+
},
|
954 |
+
{
|
955 |
+
"epoch": 2.77,
|
956 |
+
"grad_norm": 12.983444823217722,
|
957 |
+
"learning_rate": 1.8247703711489684e-06,
|
958 |
+
"loss": 1.3574,
|
959 |
+
"step": 122
|
960 |
+
},
|
961 |
+
{
|
962 |
+
"epoch": 2.79,
|
963 |
+
"grad_norm": 12.49029286171803,
|
964 |
+
"learning_rate": 1.8090169943749474e-06,
|
965 |
+
"loss": 1.2959,
|
966 |
+
"step": 123
|
967 |
+
},
|
968 |
+
{
|
969 |
+
"epoch": 2.81,
|
970 |
+
"grad_norm": 13.615451091420056,
|
971 |
+
"learning_rate": 1.792659898800858e-06,
|
972 |
+
"loss": 1.3111,
|
973 |
+
"step": 124
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 2.84,
|
977 |
+
"grad_norm": 13.83043214333827,
|
978 |
+
"learning_rate": 1.7757112907044198e-06,
|
979 |
+
"loss": 1.164,
|
980 |
+
"step": 125
|
981 |
+
},
|
982 |
+
{
|
983 |
+
"epoch": 2.86,
|
984 |
+
"grad_norm": 17.199617532425503,
|
985 |
+
"learning_rate": 1.7581838177721627e-06,
|
986 |
+
"loss": 1.2572,
|
987 |
+
"step": 126
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"epoch": 2.88,
|
991 |
+
"grad_norm": 13.886856649280148,
|
992 |
+
"learning_rate": 1.7400905596612518e-06,
|
993 |
+
"loss": 1.3808,
|
994 |
+
"step": 127
|
995 |
+
},
|
996 |
+
{
|
997 |
+
"epoch": 2.91,
|
998 |
+
"grad_norm": 17.01161335716492,
|
999 |
+
"learning_rate": 1.7214450182389558e-06,
|
1000 |
+
"loss": 1.2377,
|
1001 |
+
"step": 128
|
1002 |
+
},
|
1003 |
+
{
|
1004 |
+
"epoch": 2.93,
|
1005 |
+
"grad_norm": 16.95998475128064,
|
1006 |
+
"learning_rate": 1.7022611075070473e-06,
|
1007 |
+
"loss": 1.3853,
|
1008 |
+
"step": 129
|
1009 |
+
}
|
1010 |
+
],
|
1011 |
+
"logging_steps": 1,
|
1012 |
+
"max_steps": 215,
|
1013 |
+
"num_input_tokens_seen": 0,
|
1014 |
+
"num_train_epochs": 5,
|
1015 |
+
"save_steps": 43,
|
1016 |
+
"total_flos": 1.8034363315991347e+17,
|
1017 |
+
"train_batch_size": 1,
|
1018 |
+
"trial_name": null,
|
1019 |
+
"trial_params": null
|
1020 |
+
}
|
checkpoint-129/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3849b9725e9ad74ffd0060b99725915a5a8bcdb6bdd4f63d6ac5ce71061eb4dd
|
3 |
+
size 6395
|
checkpoint-129/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-172/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 1,
|
8 |
+
"eos_token_id": 2,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 4096,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 14336,
|
13 |
+
"max_position_embeddings": 32768,
|
14 |
+
"model_type": "mistral",
|
15 |
+
"num_attention_heads": 32,
|
16 |
+
"num_hidden_layers": 32,
|
17 |
+
"num_key_value_heads": 8,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_theta": 10000.0,
|
20 |
+
"sliding_window": 4096,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.38.0",
|
24 |
+
"use_cache": false,
|
25 |
+
"vocab_size": 32000
|
26 |
+
}
|
checkpoint-172/generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": 2,
|
6 |
+
"transformers_version": "4.38.0"
|
7 |
+
}
|
checkpoint-172/global_step172/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3021601ef7872a37fc136426c6aab5f154c86ee7893dfd10f3c041c1582bde5
|
3 |
+
size 10862603447
|
checkpoint-172/global_step172/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b4e652c72c9a528da7754a0258267fbb9c36cfff75f14af64a11cb759a80171
|
3 |
+
size 10862603639
|
checkpoint-172/global_step172/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8cc6cf7eabf157dc87979abb8f5d03c1e7b1efac940d0e6d5c9499999e033cd
|
3 |
+
size 10862603767
|
checkpoint-172/global_step172/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c2f31afaa2e3c4e5c757a714c1d1a26aabaac8f01097c87349119cc4e5ee6f9
|
3 |
+
size 10862603895
|
checkpoint-172/global_step172/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ee8c8178d38d6951dd2fd8666773475258cef4e27f42acb10d8665ed3f0ff74
|
3 |
+
size 10862603895
|
checkpoint-172/global_step172/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1a1a08649c60088b6c96cba3e2a1c3bc848aa49632d1b89f2195d127e4dcdb1c
|
3 |
+
size 10862603767
|
checkpoint-172/global_step172/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ae126f42c064847fa2bf5a829f9b09be38d24dec3abbe26a78079f7dde130762
|
3 |
+
size 10862603703
|
checkpoint-172/global_step172/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4a59409f4464ab613ce38d7802c802cf025b3f26f25330217ec7e4f1e78c385
|
3 |
+
size 10862603447
|
checkpoint-172/global_step172/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2af50414b97c80c2a4c2f572af1e44ac3474dd7d8d4ee0e6eadb0e47a3bb7cf7
|
3 |
+
size 14483551747
|
checkpoint-172/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step172
|
checkpoint-172/model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a204695b04e89311c2685193e1d43bb8d4e7d822e429d607d0bc9a1753123478
|
3 |
+
size 4943162336
|
checkpoint-172/model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b50a6a6ec0133c9b34f34c0bdf735df8e38b603368dbaa05068e3588c3cbb843
|
3 |
+
size 4999819336
|
checkpoint-172/model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6eea467fc1ac973ce5e581abfa48d41e52d7048f53a88047bbdc1d21ae298905
|
3 |
+
size 4540516344
|
checkpoint-172/model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483464192
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
checkpoint-172/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4aa30b901a76717ad724ad2cdc59b1a9954aae73abfbe679dab0feec6b24e70a
|
3 |
+
size 21687
|
checkpoint-172/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837265efabb97deee70e7c5bd9612eb60bfe277c2c13f0d5c7074faa43fc4f00
|
3 |
+
size 21687
|
checkpoint-172/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:501389bb9fcd278d3c3a2fd08e5beea60698228c4fcd794eae2f6e0820bfaea9
|
3 |
+
size 21687
|
checkpoint-172/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99d1563cea741617aad72d62e023a352073715e810ca5cfb1ff7a0c2b16c41a9
|
3 |
+
size 21687
|
checkpoint-172/rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd700607aad5df0f237828338e57527a104be4665e877e73ae19837b366bc298
|
3 |
+
size 21687
|