File size: 1,719 Bytes
5d8bdbb fc55c27 5d8bdbb f740b45 5d8bdbb f740b45 5d8bdbb 3cb1186 f740b45 5d8bdbb f740b45 5d8bdbb f740b45 5d8bdbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# results
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5162
- Accuracy: 0.9213
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 6.0895 | 1.0 | 2371 | 5.7708 | 0.4478 |
| 4.5154 | 2.0 | 4742 | 4.3046 | 0.7988 |
| 3.5146 | 3.0 | 7113 | 3.1486 | 0.8932 |
| 2.6148 | 4.0 | 9484 | 2.3505 | 0.9134 |
| 2.1514 | 5.0 | 11855 | 1.8621 | 0.9178 |
| 1.9055 | 6.0 | 14226 | 1.5997 | 0.9210 |
| 1.635 | 7.0 | 16597 | 1.5162 | 0.9213 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.3.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|