File size: 1,719 Bytes
5d8bdbb
fc55c27
 
5d8bdbb
 
 
 
 
 
 
 
 
 
 
 
 
 
f740b45
5d8bdbb
f740b45
 
5d8bdbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb1186
f740b45
 
5d8bdbb
 
 
f740b45
5d8bdbb
 
 
f740b45
 
 
 
 
 
 
 
 
5d8bdbb
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5162
- Accuracy: 0.9213

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 6.0895        | 1.0   | 2371  | 5.7708          | 0.4478   |
| 4.5154        | 2.0   | 4742  | 4.3046          | 0.7988   |
| 3.5146        | 3.0   | 7113  | 3.1486          | 0.8932   |
| 2.6148        | 4.0   | 9484  | 2.3505          | 0.9134   |
| 2.1514        | 5.0   | 11855 | 1.8621          | 0.9178   |
| 1.9055        | 6.0   | 14226 | 1.5997          | 0.9210   |
| 1.635         | 7.0   | 16597 | 1.5162          | 0.9213   |


### Framework versions

- Transformers 4.39.3
- Pytorch 2.3.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2