--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- # results This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7750 - Accuracy: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 6.4334 | 1.0 | 593 | 6.1799 | 0.3660 | | 4.3096 | 2.0 | 1186 | 3.9473 | 0.8412 | | 2.6773 | 3.0 | 1779 | 2.3788 | 0.9079 | | 1.7389 | 4.0 | 2372 | 1.5072 | 0.9197 | | 1.1692 | 5.0 | 2965 | 1.0537 | 0.9236 | | 0.9072 | 6.0 | 3558 | 0.8410 | 0.9254 | | 0.7699 | 7.0 | 4151 | 0.7750 | 0.9257 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.3.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2