File size: 2,945 Bytes
bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc bc7cc4e fa2a0fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 |
---
library_name: transformers
tags:
- chocolatine
- dpo
- llama-cpp
license: apache-2.0
datasets:
- jpacifico/french-orca-dpo-pairs-revised
language:
- fr
- en
base_model: jpacifico/Chocolatine-2-14B-Instruct-v2.0.3
---
# jpacifico/Chocolatine-2-14B-Instruct-v2.0.3-Q4_K_M-GGUF
Quantized Q4_K_M GGUF version of the original model [`Chocolatine-2-14B-Instruct-v2.0.3`](https://huggingface.co/jpacifico/Chocolatine-2-14B-Instruct-v2.0.3)
can be used on a CPU device, compatible [llama.cpp](https://github.com/ggerganov/llama.cpp)
Supported architecture by [LM Studio](https://lmstudio.ai/).
### Ollama
Previously install [Ollama](https://ollama.com/).
Usage:
```bash
ollama create chocolatine-2 -f Modelfile_chocolatine-2-q4
ollama run chocolatine-2
```
Ollama *Modelfile* example :
```bash
FROM ./chocolatine-2-14b-instruct-v2.0.3-q4_k_m.gguf
TEMPLATE """
{{- if .Suffix }}<|fim_prefix|>{{ .Prompt }}<|fim_suffix|>{{ .Suffix }}<|fim_middle|>
{{- else if .Messages }}
{{- if or .System .Tools }}<|im_start|>system
{{- if .System }}
{{ .System }}
{{- end }}
{{- if .Tools }}
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{{- range .Tools }}
{"type": "function", "function": {{ .Function }}}
{{- end }}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{"name": <function-name>, "arguments": <args-json-object>}
</tool_call>
{{- end }}<|im_end|>
{{ end }}
{{- range $i, $_ := .Messages }}
{{- $last := eq (len (slice $.Messages $i)) 1 -}}
{{- if eq .Role "user" }}<|im_start|>user
{{ .Content }}<|im_end|>
{{ else if eq .Role "assistant" }}<|im_start|>assistant
{{ if .Content }}{{ .Content }}
{{- else if .ToolCalls }}<tool_call>
{{ range .ToolCalls }}{"name": "{{ .Function.Name }}", "arguments": {{ .Function.Arguments }}}
{{ end }}</tool_call>
{{- end }}{{ if not $last }}<|im_end|>
{{ end }}
{{- else if eq .Role "tool" }}<|im_start|>user
<tool_response>
{{ .Content }}
</tool_response><|im_end|>
{{ end }}
{{- if and (ne .Role "assistant") $last }}<|im_start|>assistant
{{ end }}
{{- end }}
{{- else }}
{{- if .System }}<|im_start|>system
{{ .System }}<|im_end|>
{{ end }}{{ if .Prompt }}<|im_start|>user
{{ .Prompt }}<|im_end|>
{{ end }}<|im_start|>assistant
{{ end }}{{ .Response }}{{ if .Response }}<|im_end|>{{ end }}
"""
SYSTEM """Tu es Chocolatine, un assistant IA serviable et bienveillant. Tu fais des réponses concises et précises."""
```
### Limitations
The Chocolatine-2 model series is a quick demonstration that a base model can be easily fine-tuned to achieve compelling performance.
It does not have any moderation mechanism.
- **Developed by:** Jonathan Pacifico, 2025
- **Model type:** LLM
- **Language(s) (NLP):** French, English
- **License:** Apache-2.0
Made with ❤️ in France
|