File size: 1,679 Bytes
fb5c105 8fb43da fb5c105 815f90a fb5c105 8fb43da fb5c105 4151aee fb5c105 4151aee fb5c105 4151aee fb5c105 4151aee fb5c105 4151aee fb5c105 4151aee fb5c105 4151aee fb5c105 d339892 4151aee fb5c105 4151aee fb5c105 4151aee fb5c105 815f90a fb5c105 815f90a fb5c105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- hf-asr-leaderboard
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Tiny Metal - Juan Pablo Diaz
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Tiny Metal - Juan Pablo Diaz
This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Gutural Scream and Metal Vocals dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6780
- Wer: 79.9061
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.0844 | 9.62 | 1000 | 1.3967 | 104.6055 |
| 0.0018 | 19.23 | 2000 | 1.5861 | 93.5465 |
| 0.0008 | 28.85 | 3000 | 1.6552 | 78.9381 |
| 0.0006 | 38.46 | 4000 | 1.6780 | 79.9061 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|