jpherrerap commited on
Commit
bf8cd69
·
1 Parent(s): db6b7cf

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -26
README.md CHANGED
@@ -1,11 +1,7 @@
1
  ---
2
- language:
3
- - es
4
  license: cc-by-nc-4.0
5
  tags:
6
  - generated_from_trainer
7
- datasets:
8
- - jpherrerap/competencia2
9
  model-index:
10
  - name: ner-roberta-es-clinical-trials-ner
11
  results: []
@@ -16,33 +12,33 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  # ner-roberta-es-clinical-trials-ner
18
 
19
- This model is a fine-tuned version of [lcampillos/roberta-es-clinical-trials-ner](https://huggingface.co/lcampillos/roberta-es-clinical-trials-ner) on the jpherrerap/competencia2 dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 0.2811
22
- - Body Part Precision: 0.6861
23
- - Body Part Recall: 0.7766
24
- - Body Part F1: 0.7286
25
  - Body Part Number: 197
26
- - Disease Precision: 0.7476
27
- - Disease Recall: 0.7505
28
- - Disease F1: 0.7490
29
  - Disease Number: 521
30
  - Family Member Precision: 0.8462
31
  - Family Member Recall: 0.8462
32
  - Family Member F1: 0.8462
33
  - Family Member Number: 13
34
- - Medication Precision: 0.8158
35
  - Medication Recall: 0.8378
36
- - Medication F1: 0.8267
37
  - Medication Number: 37
38
- - Procedure Precision: 0.6282
39
- - Procedure Recall: 0.7313
40
- - Procedure F1: 0.6759
41
  - Procedure Number: 134
42
- - Overall Precision: 0.7177
43
- - Overall Recall: 0.7583
44
- - Overall F1: 0.7375
45
- - Overall Accuracy: 0.9174
46
 
47
  ## Model description
48
 
@@ -61,21 +57,20 @@ More information needed
61
  ### Training hyperparameters
62
 
63
  The following hyperparameters were used during training:
64
- - learning_rate: 2e-05
65
  - train_batch_size: 16
66
  - eval_batch_size: 16
67
  - seed: 13
68
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
69
  - lr_scheduler_type: linear
70
- - num_epochs: 3
71
 
72
  ### Training results
73
 
74
  | Training Loss | Epoch | Step | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
75
  |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
76
- | 0.3951 | 1.0 | 502 | 0.2831 | 0.6697 | 0.7513 | 0.7081 | 197 | 0.7314 | 0.7370 | 0.7342 | 521 | 1.0 | 0.8462 | 0.9167 | 13 | 0.625 | 0.6757 | 0.6494 | 37 | 0.5556 | 0.6716 | 0.6081 | 134 | 0.6861 | 0.7295 | 0.7071 | 0.9144 |
77
- | 0.2123 | 2.0 | 1004 | 0.2912 | 0.6623 | 0.7665 | 0.7106 | 197 | 0.7389 | 0.7332 | 0.7360 | 521 | 0.7857 | 0.8462 | 0.8148 | 13 | 0.675 | 0.7297 | 0.7013 | 37 | 0.6289 | 0.7463 | 0.6826 | 134 | 0.7004 | 0.7439 | 0.7215 | 0.9132 |
78
- | 0.1686 | 3.0 | 1506 | 0.2811 | 0.6861 | 0.7766 | 0.7286 | 197 | 0.7476 | 0.7505 | 0.7490 | 521 | 0.8462 | 0.8462 | 0.8462 | 13 | 0.8158 | 0.8378 | 0.8267 | 37 | 0.6282 | 0.7313 | 0.6759 | 134 | 0.7177 | 0.7583 | 0.7375 | 0.9174 |
79
 
80
 
81
  ### Framework versions
 
1
  ---
 
 
2
  license: cc-by-nc-4.0
3
  tags:
4
  - generated_from_trainer
 
 
5
  model-index:
6
  - name: ner-roberta-es-clinical-trials-ner
7
  results: []
 
12
 
13
  # ner-roberta-es-clinical-trials-ner
14
 
15
+ This model is a fine-tuned version of [lcampillos/roberta-es-clinical-trials-ner](https://huggingface.co/lcampillos/roberta-es-clinical-trials-ner) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.2661
18
+ - Body Part Precision: 0.7124
19
+ - Body Part Recall: 0.8173
20
+ - Body Part F1: 0.7612
21
  - Body Part Number: 197
22
+ - Disease Precision: 0.7712
23
+ - Disease Recall: 0.7697
24
+ - Disease F1: 0.7704
25
  - Disease Number: 521
26
  - Family Member Precision: 0.8462
27
  - Family Member Recall: 0.8462
28
  - Family Member F1: 0.8462
29
  - Family Member Number: 13
30
+ - Medication Precision: 0.8378
31
  - Medication Recall: 0.8378
32
+ - Medication F1: 0.8378
33
  - Medication Number: 37
34
+ - Procedure Precision: 0.6510
35
+ - Procedure Recall: 0.7239
36
+ - Procedure F1: 0.6855
37
  - Procedure Number: 134
38
+ - Overall Precision: 0.7418
39
+ - Overall Recall: 0.7772
40
+ - Overall F1: 0.7591
41
+ - Overall Accuracy: 0.9238
42
 
43
  ## Model description
44
 
 
57
  ### Training hyperparameters
58
 
59
  The following hyperparameters were used during training:
60
+ - learning_rate: 5e-05
61
  - train_batch_size: 16
62
  - eval_batch_size: 16
63
  - seed: 13
64
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
  - lr_scheduler_type: linear
66
+ - num_epochs: 2
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
71
  |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:|
72
+ | 0.3329 | 1.0 | 502 | 0.2561 | 0.6830 | 0.7766 | 0.7268 | 197 | 0.7718 | 0.7658 | 0.7688 | 521 | 0.9231 | 0.9231 | 0.9231 | 13 | 0.75 | 0.8108 | 0.7792 | 37 | 0.6218 | 0.7239 | 0.6690 | 134 | 0.7274 | 0.7661 | 0.7462 | 0.9219 |
73
+ | 0.1699 | 2.0 | 1004 | 0.2661 | 0.7124 | 0.8173 | 0.7612 | 197 | 0.7712 | 0.7697 | 0.7704 | 521 | 0.8462 | 0.8462 | 0.8462 | 13 | 0.8378 | 0.8378 | 0.8378 | 37 | 0.6510 | 0.7239 | 0.6855 | 134 | 0.7418 | 0.7772 | 0.7591 | 0.9238 |
 
74
 
75
 
76
  ### Framework versions