--- language: - es license: cc-by-nc-4.0 tags: - generated_from_trainer datasets: - jpherrerap/competencia2 model-index: - name: ner-roberta-es-clinical-trials-ner results: [] --- # ner-roberta-es-clinical-trials-ner This model is a fine-tuned version of [lcampillos/roberta-es-clinical-trials-ner](https://huggingface.co/lcampillos/roberta-es-clinical-trials-ner) on the jpherrerap/competencia2 dataset. It achieves the following results on the evaluation set: - Loss: 0.2811 - Body Part Precision: 0.6861 - Body Part Recall: 0.7766 - Body Part F1: 0.7286 - Body Part Number: 197 - Disease Precision: 0.7476 - Disease Recall: 0.7505 - Disease F1: 0.7490 - Disease Number: 521 - Family Member Precision: 0.8462 - Family Member Recall: 0.8462 - Family Member F1: 0.8462 - Family Member Number: 13 - Medication Precision: 0.8158 - Medication Recall: 0.8378 - Medication F1: 0.8267 - Medication Number: 37 - Procedure Precision: 0.6282 - Procedure Recall: 0.7313 - Procedure F1: 0.6759 - Procedure Number: 134 - Overall Precision: 0.7177 - Overall Recall: 0.7583 - Overall F1: 0.7375 - Overall Accuracy: 0.9174 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 13 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Body Part Precision | Body Part Recall | Body Part F1 | Body Part Number | Disease Precision | Disease Recall | Disease F1 | Disease Number | Family Member Precision | Family Member Recall | Family Member F1 | Family Member Number | Medication Precision | Medication Recall | Medication F1 | Medication Number | Procedure Precision | Procedure Recall | Procedure F1 | Procedure Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------------:|:--------------------:|:----------------:|:--------------------:|:--------------------:|:-----------------:|:-------------:|:-----------------:|:-------------------:|:----------------:|:------------:|:----------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 0.3951 | 1.0 | 502 | 0.2831 | 0.6697 | 0.7513 | 0.7081 | 197 | 0.7314 | 0.7370 | 0.7342 | 521 | 1.0 | 0.8462 | 0.9167 | 13 | 0.625 | 0.6757 | 0.6494 | 37 | 0.5556 | 0.6716 | 0.6081 | 134 | 0.6861 | 0.7295 | 0.7071 | 0.9144 | | 0.2123 | 2.0 | 1004 | 0.2912 | 0.6623 | 0.7665 | 0.7106 | 197 | 0.7389 | 0.7332 | 0.7360 | 521 | 0.7857 | 0.8462 | 0.8148 | 13 | 0.675 | 0.7297 | 0.7013 | 37 | 0.6289 | 0.7463 | 0.6826 | 134 | 0.7004 | 0.7439 | 0.7215 | 0.9132 | | 0.1686 | 3.0 | 1506 | 0.2811 | 0.6861 | 0.7766 | 0.7286 | 197 | 0.7476 | 0.7505 | 0.7490 | 521 | 0.8462 | 0.8462 | 0.8462 | 13 | 0.8158 | 0.8378 | 0.8267 | 37 | 0.6282 | 0.7313 | 0.6759 | 134 | 0.7177 | 0.7583 | 0.7375 | 0.9174 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3