Update handler.py
Browse files- handler.py +8 -9
handler.py
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
3 |
import torch
|
4 |
|
5 |
#Mean Pooling - Take attention mask into account for correct averaging
|
@@ -11,10 +13,10 @@ def mean_pooling(model_output, attention_mask):
|
|
11 |
class EndpointHandler():
|
12 |
def __init__(self, path=""):
|
13 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
-
self.
|
15 |
-
self.
|
16 |
-
self.model.to(self.device)
|
17 |
-
print("model will run on ", self.device)
|
18 |
|
19 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
20 |
"""
|
@@ -25,11 +27,8 @@ class EndpointHandler():
|
|
25 |
A :obj:`list` | `dict`: will be serialized and returned
|
26 |
"""
|
27 |
sentences = data.pop("inputs",data)
|
28 |
-
|
29 |
-
|
30 |
-
# Compute token embeddings
|
31 |
-
with torch.no_grad():
|
32 |
-
model_output = self.model(**encoded_input)
|
33 |
|
34 |
# Perform pooling. In this case, max pooling.
|
35 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
from transformers import AutoTokenizer, AutoModel
|
3 |
+
from optimum.onnxruntime.modeling_ort import ORTModelForCustomTasks
|
4 |
+
|
5 |
import torch
|
6 |
|
7 |
#Mean Pooling - Take attention mask into account for correct averaging
|
|
|
13 |
class EndpointHandler():
|
14 |
def __init__(self, path=""):
|
15 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
self.model = ORTModelForCustomTasks.from_pretrained("optimum/sbert-all-MiniLM-L6-with-pooler")
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained("optimum/sbert-all-MiniLM-L6-with-pooler")
|
18 |
+
# self.model.to(self.device)
|
19 |
+
# print("model will run on ", self.device)
|
20 |
|
21 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
22 |
"""
|
|
|
27 |
A :obj:`list` | `dict`: will be serialized and returned
|
28 |
"""
|
29 |
sentences = data.pop("inputs",data)
|
30 |
+
inputs = tokenizer("I love burritos!", return_tensors="pt")
|
31 |
+
pred = self.model(**encoded_input)
|
|
|
|
|
|
|
32 |
|
33 |
# Perform pooling. In this case, max pooling.
|
34 |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|