jpohhhh commited on
Commit
87fd374
·
1 Parent(s): 8ea33da

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +0 -22
handler.py CHANGED
@@ -30,19 +30,10 @@ def mean_pooling(model_output):
30
 
31
  class EndpointHandler():
32
  def __init__(self, path=""):
33
- print("HELLO THIS IS THE CWD:", os.getcwd())
34
- print("HELLO THIS IS THE PATH ARG:", path)
35
- files = os.listdir(path)
36
- for file in files:
37
- print(file)
38
- # self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
39
  task = "feature-extraction"
40
  self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
41
  model_regular = ORTModelForFeatureExtraction.from_pretrained("jpohhhh/msmarco-MiniLM-L-6-v3_onnx", from_transformers=False)
42
-
43
  self.onnx_extractor = pipeline(task, model=model_regular, tokenizer=self.tokenizer)
44
- # self.model.to(self.device)
45
- # print("model will run on ", self.device)
46
 
47
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
48
  """
@@ -52,24 +43,11 @@ class EndpointHandler():
52
  Return:
53
  A :obj:`list` | `dict`: will be serialized and returned
54
  """
55
- print("A")
56
  sentences = data.pop("inputs",data)
57
- print("B")
58
  sentence_embeddings = []
59
- print("C")
60
  for sentence in sentences:
61
- print("D")
62
-
63
-
64
  # Compute token embeddings
65
  with torch.no_grad():
66
  model_output = self.onnx_extractor(sentence)
67
- print("E")
68
-
69
- # Perform pooling. In this case, max pooling.
70
- # embedding = mean_pooling(model_output, encoded_input['attention_mask'])
71
- print("F")
72
-
73
  sentence_embeddings.append(mean_pooling(model_output))
74
- print("G")
75
  return sentence_embeddings
 
30
 
31
  class EndpointHandler():
32
  def __init__(self, path=""):
 
 
 
 
 
 
33
  task = "feature-extraction"
34
  self.tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
35
  model_regular = ORTModelForFeatureExtraction.from_pretrained("jpohhhh/msmarco-MiniLM-L-6-v3_onnx", from_transformers=False)
 
36
  self.onnx_extractor = pipeline(task, model=model_regular, tokenizer=self.tokenizer)
 
 
37
 
38
  def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
39
  """
 
43
  Return:
44
  A :obj:`list` | `dict`: will be serialized and returned
45
  """
 
46
  sentences = data.pop("inputs",data)
 
47
  sentence_embeddings = []
 
48
  for sentence in sentences:
 
 
 
49
  # Compute token embeddings
50
  with torch.no_grad():
51
  model_output = self.onnx_extractor(sentence)
 
 
 
 
 
 
52
  sentence_embeddings.append(mean_pooling(model_output))
 
53
  return sentence_embeddings