Update handler.py
Browse files- handler.py +4 -2
handler.py
CHANGED
@@ -4,7 +4,7 @@ from optimum.pipelines import pipeline
|
|
4 |
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
5 |
from pathlib import Path
|
6 |
|
7 |
-
|
8 |
import torch
|
9 |
|
10 |
#Mean Pooling - Take attention mask into account for correct averaging
|
@@ -15,10 +15,12 @@ def mean_pooling(model_output, attention_mask):
|
|
15 |
|
16 |
class EndpointHandler():
|
17 |
def __init__(self, path=""):
|
|
|
|
|
18 |
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
task = "feature-extraction"
|
20 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
|
21 |
-
model_regular = ORTModelForFeatureExtraction.from_pretrained(Path("onnx"), file_name="model.onnx", from_transformers=False)
|
22 |
self.onnx_extractor = pipeline(task, model=model_regular, tokenizer=tokenizer)
|
23 |
# self.model.to(self.device)
|
24 |
# print("model will run on ", self.device)
|
|
|
4 |
from optimum.onnxruntime import ORTModelForFeatureExtraction
|
5 |
from pathlib import Path
|
6 |
|
7 |
+
import os
|
8 |
import torch
|
9 |
|
10 |
#Mean Pooling - Take attention mask into account for correct averaging
|
|
|
15 |
|
16 |
class EndpointHandler():
|
17 |
def __init__(self, path=""):
|
18 |
+
print("HELLO THIS IS THE CWD:", os.getcwd())
|
19 |
+
print("HELLO THIS IS THE PATH ARG:", path)
|
20 |
# self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
task = "feature-extraction"
|
22 |
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/msmarco-MiniLM-L-6-v3')
|
23 |
+
model_regular = ORTModelForFeatureExtraction.from_pretrained(Path(path / "onnx"), file_name="model.onnx", from_transformers=False)
|
24 |
self.onnx_extractor = pipeline(task, model=model_regular, tokenizer=tokenizer)
|
25 |
# self.model.to(self.device)
|
26 |
# print("model will run on ", self.device)
|