mpt-7b-instruct-sharded / configuration_mpt.py
pszemraj's picture
🎨 format for readability
21986ed
raw
history blame
9.87 kB
"""A HuggingFace-style model configuration."""
from typing import Dict, Optional, Union
from transformers import PretrainedConfig
attn_config_defaults: Dict = {
"attn_type": "multihead_attention",
"attn_pdrop": 0.0,
"attn_impl": "triton",
"qk_ln": False,
"clip_qkv": None,
"softmax_scale": None,
"prefix_lm": False,
"attn_uses_sequence_id": False,
"alibi": False,
"alibi_bias_max": 8,
}
init_config_defaults: Dict = {
"name": "kaiming_normal_",
"fan_mode": "fan_in",
"init_nonlinearity": "relu",
}
class MPTConfig(PretrainedConfig):
model_type = "mpt"
def __init__(
self,
d_model: int = 2048,
n_heads: int = 16,
n_layers: int = 24,
expansion_ratio: int = 4,
max_seq_len: int = 2048,
vocab_size: int = 50368,
resid_pdrop: float = 0.0,
emb_pdrop: float = 0.0,
learned_pos_emb: bool = True,
attn_config: Dict = attn_config_defaults,
init_device: str = "cpu",
logit_scale: Optional[Union[float, str]] = None,
no_bias: bool = False,
verbose: int = 0,
embedding_fraction: float = 1.0,
norm_type: str = "low_precision_layernorm",
use_cache: bool = False,
init_config: Dict = init_config_defaults,
**kwargs,
):
"""The MPT configuration class.
Args:
d_model (int): The size of the embedding dimension of the model.
n_heads (int): The number of attention heads.
n_layers (int): The number of layers in the model.
expansion_ratio (int): The ratio of the up/down scale in the MLP.
max_seq_len (int): The maximum sequence length of the model.
vocab_size (int): The size of the vocabulary.
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
emb_pdrop (float): The dropout probability for the embedding layer.
learned_pos_emb (bool): Whether to use learned positional embeddings
attn_config (Dict): A dictionary used to configure the model's attention module:
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
attn_pdrop (float): The dropout probability for the attention layers.
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
this value.
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
use the default scale of ``1/sqrt(d_keys)``.
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
which sub-sequence each token belongs to.
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
alibi (bool): Whether to use the alibi bias instead of position embeddings.
alibi_bias_max (int): The maximum value of the alibi bias.
init_device (str): The device to use for parameter initialization.
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
no_bias (bool): Whether to use bias in all layers.
verbose (int): The verbosity level. 0 is silent.
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
norm_type (str): choose type of norm to use
multiquery_attention (bool): Whether to use multiquery attention implementation.
use_cache (bool): Whether or not the model should return the last key/values attentions
init_config (Dict): A dictionary used to configure the model initialization:
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
init_std (float): The standard deviation of the normal distribution used to initialize the model,
if using the baseline_ parameter initialization scheme.
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
---
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
"""
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.expansion_ratio = expansion_ratio
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.learned_pos_emb = learned_pos_emb
self.attn_config = attn_config
self.init_device = init_device
self.logit_scale = logit_scale
self.no_bias = no_bias
self.verbose = verbose
self.embedding_fraction = embedding_fraction
self.norm_type = norm_type
self.use_cache = use_cache
self.init_config = init_config
if "name" in kwargs:
del kwargs["name"]
if "loss_fn" in kwargs:
del kwargs["loss_fn"]
super().__init__(**kwargs)
self._validate_config()
def _set_config_defaults(self, config, config_defaults):
for k, v in config_defaults.items():
if k not in config:
config[k] = v
return config
def _validate_config(self):
self.attn_config = self._set_config_defaults(
self.attn_config, attn_config_defaults
)
self.init_config = self._set_config_defaults(
self.init_config, init_config_defaults
)
if self.d_model % self.n_heads != 0:
raise ValueError("d_model must be divisible by n_heads")
if any(
(
prob < 0 or prob > 1
for prob in [
self.attn_config["attn_pdrop"],
self.resid_pdrop,
self.emb_pdrop,
]
)
):
raise ValueError(
"self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1"
)
if self.attn_config["attn_impl"] not in ["torch", "flash", "triton"]:
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
if self.attn_config["prefix_lm"] and self.attn_config["attn_impl"] not in [
"torch",
"triton",
]:
raise NotImplementedError(
"prefix_lm only implemented with torch and triton attention."
)
if self.attn_config["alibi"] and self.attn_config["attn_impl"] not in [
"torch",
"triton",
]:
raise NotImplementedError(
"alibi only implemented with torch and triton attention."
)
if self.attn_config["attn_uses_sequence_id"] and self.attn_config[
"attn_impl"
] not in ["torch", "triton"]:
raise NotImplementedError(
"attn_uses_sequence_id only implemented with torch and triton attention."
)
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
raise ValueError(
"model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!"
)
if isinstance(self.logit_scale, str) and self.logit_scale != "inv_sqrt_d_model":
raise ValueError(
f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'."
)
if self.init_config.get("name", None) is None:
raise ValueError(
f"self.init_config={self.init_config!r} 'name' needs to be set."
)
if not self.learned_pos_emb and (not self.attn_config["alibi"]):
raise ValueError(
f"Positional information must be provided to the model using either learned_pos_emb or alibi."
)