--- license: apache-2.0 tags: - generated_from_trainer datasets: - common_voice_11_0 metrics: - wer base_model: juancopi81/whisper-medium-es-train-valid model-index: - name: juancopi81/whisper-medium-es-train-valid results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: es split: test args: es metrics: - type: wer value: 6.15482563276337 name: Wer --- # juancopi81/whisper-medium-es-train-valid This model is a fine-tuned version of [juancopi81/whisper-medium-es-train-valid](https://huggingface.co/juancopi81/whisper-medium-es-train-valid) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2227 - Wer: 6.1548 Using the script provided in the Whisper Sprint (Dec. 2022) the models achieves these results on the evaluation sets (WER): - google/fleurs: 6.94 - mozilla-foundation/common_voice_11_0: XXXX ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0539 | 1.01 | 1000 | 0.2100 | 6.4465 | | 0.0211 | 2.01 | 2000 | 0.2286 | 6.5082 | | 0.0088 | 3.02 | 3000 | 0.2418 | 6.3848 | | 0.0205 | 4.02 | 4000 | 0.2288 | 6.6603 | | 0.1031 | 5.03 | 5000 | 0.2227 | 6.1548 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2