File size: 1,872 Bytes
2044abc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: cc0-1.0
base_model: bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: BlueBERT_CRAFT_NER
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BlueBERT_CRAFT_NER

This model is a fine-tuned version of [bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12](https://huggingface.co/bionlp/bluebert_pubmed_mimic_uncased_L-12_H-768_A-12) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1403
- Precision: 0.8067
- Recall: 0.7909
- F1: 0.7987
- Accuracy: 0.9633

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log        | 1.0   | 347  | 0.1578          | 0.7663    | 0.7662 | 0.7662 | 0.9562   |
| 0.2328        | 2.0   | 695  | 0.1396          | 0.7927    | 0.7994 | 0.7961 | 0.9620   |
| 0.0645        | 3.0   | 1041 | 0.1403          | 0.8067    | 0.7909 | 0.7987 | 0.9633   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.0
- Tokenizers 0.15.0