--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: VF_BERT_ST_1800_V2 results: [] --- # VF_BERT_ST_1800_V2 This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1698 - Precision: 0.9686 - Recall: 0.9772 - F1: 0.9729 - Accuracy: 0.9683 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2128 | 1.0 | 569 | 0.1128 | 0.9644 | 0.9733 | 0.9688 | 0.9654 | | 0.0784 | 2.0 | 1138 | 0.1145 | 0.9668 | 0.9753 | 0.9710 | 0.9672 | | 0.0512 | 3.0 | 1707 | 0.1242 | 0.9680 | 0.9746 | 0.9712 | 0.9663 | | 0.0327 | 4.0 | 2276 | 0.1227 | 0.9706 | 0.9762 | 0.9734 | 0.9673 | | 0.022 | 5.0 | 2845 | 0.1298 | 0.9684 | 0.9755 | 0.9719 | 0.9686 | | 0.0153 | 6.0 | 3414 | 0.1410 | 0.9710 | 0.9778 | 0.9744 | 0.9698 | | 0.0118 | 7.0 | 3983 | 0.1589 | 0.9681 | 0.9777 | 0.9729 | 0.9686 | | 0.0058 | 8.0 | 4552 | 0.1617 | 0.9696 | 0.9773 | 0.9735 | 0.9691 | | 0.005 | 9.0 | 5121 | 0.1731 | 0.9685 | 0.9773 | 0.9729 | 0.9683 | | 0.0043 | 10.0 | 5690 | 0.1698 | 0.9686 | 0.9772 | 0.9729 | 0.9683 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1