--- tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner-ime results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: train args: conll2003 metrics: - name: Precision type: precision value: 0.998195331607817 - name: Recall type: recall value: 0.9982190349544073 - name: F1 type: f1 value: 0.9982071831403979 - name: Accuracy type: accuracy value: 0.9979751132733664 --- # bert-finetuned-ner-ime This model is a fine-tuned version of [snunlp/KR-BERT-char16424](https://huggingface.co/snunlp/KR-BERT-char16424) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0076 - Precision: 0.9982 - Recall: 0.9982 - F1: 0.9982 - Accuracy: 0.9980 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0378 | 1.0 | 1756 | 0.0290 | 0.9934 | 0.9939 | 0.9936 | 0.9920 | | 0.0214 | 2.0 | 3512 | 0.0138 | 0.9969 | 0.9970 | 0.9970 | 0.9965 | | 0.0151 | 3.0 | 5268 | 0.0076 | 0.9982 | 0.9982 | 0.9982 | 0.9980 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0