--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: swin-food102 results: [] datasets: - juliensimon/food102 --- # swin-food102 This model is a fine-tuned version of [juliensimon/autotrain-food101-1471154053](https://huggingface.co/juliensimon/autotrain-food101-1471154053) on the [food102](https://huggingface.co/datasets/juliensimon/food102) dataset, namely the [food101](https://huggingface.co/datasets/food101) dataset with an extra class generated with a Stable Diffusion model. A detailed walk-through is available on [YouTube](https://youtu.be/sIe0eo3fYQ4). The achieves the following results on the evaluation set: - Loss: 0.2510 - Accuracy: 0.9338 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1648 | 1.0 | 597 | 0.3118 | 0.9218 | | 0.31 | 2.0 | 1194 | 0.2606 | 0.9322 | | 0.2488 | 3.0 | 1791 | 0.2510 | 0.9338 | ### Framework versions - Transformers 4.23.1 - Pytorch 1.12.1+cu102 - Datasets 2.4.0 - Tokenizers 0.13.1