--- license: mit library_name: transformers datasets: - AI-MO/NuminaMath-CoT - KbsdJames/Omni-MATH - RUC-AIBOX/STILL-3-Preview-RL-Data - hendrycks/competition_math language: - en base_model: - deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B pipeline_tag: text-generation --- DeepScaleR-1.5B-Preview-Reproduce ## Overview This model is a reproduction of the [agentica-project/deepscaler](https://github.com/agentica-project/deepscaler) project. We have reproduced the results in the repo on an **8x80G A800**, achieving an average score of **56.4**. ## Training ```bash export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export VLLM_ATTENTION_BACKEND=XFORMERS # Run 8K context length training, 560 steps export MODEL_PATH="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" nohup bash run_deepscaler_1.5b_8k.sh --model $MODEL_PATH > stage1.log 2>&1 & # Run 16K context length training, 250 steps export MODEL_PATH="./checkpoints/deepscaler/deepscaler-1.5b-8k/actor/global_step_560" nohup bash run_deepscaler_1.5b_16k.sh --model $MODEL_PATH > stage2.log 2>&1 & # Run 24K context length training, 190 steps export MODEL_PATH="./checkpoints/deepscaler/deepscaler-1.5b-16k/actor/global_step_250" nohup bash run_deepscaler_1.5b_24k.sh --model $MODEL_PATH > stage3.log 2>&1 & # Run 24K context length training, 480 steps export MODEL_PATH="./checkpoints/deepscaler/deepscaler-1.5b-24k/actor/global_step_190" nohup bash run_deepscaler_1.5b_24k.sh --model $MODEL_PATH > stage3-continue.log 2>&1 & ``` ## Evaluation | Model | AIME 2024 | MATH 500 | AMC 2023 | Minerva Math | OlympiadBench | Avg. | |-------|-----------|-----------|-----------|--------------|---------------|------| | Qwen-2.5-7B-Instruct | 13.3 | 79.8 | 50.6 | 34.6 | 40.7 | 43.8 | | rStar-Math-7B | 26.7 | 78.4 | 47.5 | - | 47.1 | - | | Eurus-2-7B-PRIME | 26.7 | 79.2 | 57.8 | 38.6 | 42.1 | 48.9 | | Qwen2.5-7B-SimpleRL | 26.7 | 82.4 | 62.5 | 39.7 | 43.3 | 50.9 | | DeepSeek-R1-Distill-Qwen-1.5B | 28.8 | 82.8 | 62.9 | 26.5 | 43.3 | 48.9 | | Still-1.5B | 32.5 | 84.4 | 66.7 | 29.0 | 45.4 | 51.6 | | DeepScaleR-1.5B-Preview | 43.1 |87.8 |73.6 | 30.2 |50.0 |57.0 | | 🎉 DeepScaleR-1.5B-Preview-Reproduce | 40.4 |87.9 | 72.0 | 31.5 | 50.2 |56.4| | O1-Preview | 40.0 | 81.4 | - | - | - | - | ## Citation ```bibtex @misc{deepscaler2025, title={DeepScaleR: Surpassing O1-Preview with a 1.5B Model by Scaling RL}, author={Michael Luo and Sijun Tan and Justin Wong and Xiaoxiang Shi and William Y. Tang and Manan Roongta and Colin Cai and Jeffrey Luo and Tianjun Zhang and Li Erran Li and Raluca Ada Popa and Ion Stoica}, year={2025}, howpublished={\url{https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2}}, note={Notion Blog} year={2025} }