#!/bin/bash set -x # Warning: Export VLLM_ATTENTION_BACKEND on every machine before starting Ray cluster. # vLLM without XFORMERS will results in CUDA errors. export VLLM_ATTENTION_BACKEND=XFORMERS # Parse command line arguments while [[ $# -gt 0 ]]; do case $1 in --model) MODEL_PATH="$2" shift 2 ;; *) break ;; esac done # Set default model path if not provided if [ -z "$MODEL_PATH" ]; then MODEL_PATH="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" fi # Train over a single node, 8 A100-80GB GPUs. python3 -m verl.trainer.main_ppo \ algorithm.adv_estimator=grpo \ data.train_files=$HOME/deepscaler/data/train.parquet \ data.val_files=$HOME/deepscaler/data/aime.parquet \ data.train_batch_size=128 \ data.val_batch_size=512 \ data.max_prompt_length=1024 \ data.max_response_length=8192 \ actor_rollout_ref.model.path=$MODEL_PATH \ actor_rollout_ref.actor.optim.lr=1e-6 \ actor_rollout_ref.model.use_remove_padding=True \ actor_rollout_ref.actor.ppo_mini_batch_size=64 \ actor_rollout_ref.actor.use_dynamic_bsz=True \ actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \ actor_rollout_ref.actor.use_kl_loss=True \ actor_rollout_ref.actor.kl_loss_coef=0.001 \ actor_rollout_ref.actor.kl_loss_type=low_var_kl \ actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \ actor_rollout_ref.model.enable_gradient_checkpointing=True \ actor_rollout_ref.actor.fsdp_config.param_offload=False \ actor_rollout_ref.actor.fsdp_config.grad_offload=False \ actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \ actor_rollout_ref.rollout.tensor_model_parallel_size=1 \ actor_rollout_ref.rollout.name=vllm \ actor_rollout_ref.rollout.temperature=0.6 \ actor_rollout_ref.rollout.val_temperature=0.6 \ actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \ actor_rollout_ref.rollout.n=8 \ actor_rollout_ref.rollout.n_val=8 \ actor_rollout_ref.ref.fsdp_config.param_offload=True \ algorithm.kl_ctrl.kl_coef=0.001 \ trainer.critic_warmup=0 \ trainer.logger=['wandb'] \ trainer.project_name='deepscaler' \ trainer.experiment_name='deepscaler-1.5b-8k' \ +trainer.val_before_train=True \ trainer.n_gpus_per_node=8 \ trainer.nnodes=1 \ trainer.save_freq=20 \ trainer.test_freq=20 \ trainer.default_hdfs_dir=null \ trainer.total_epochs=30 "${@:1}"