File size: 8,165 Bytes
b5dbfe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# Model Card for Opera Bullet Interpreter

An unofficial United States Air Force and Space Force performance statement "translation" model. Takes a properly formatted performance statement, also known as a "bullet," as an input and outputs a long-form sentence, using plain english, describing the accomplishments captured within the bullet.

This checkpoint is a fine-tuned version of the LaMini-Flan-T5-783M, using the justinthelaw/opera-bullet-completions (private) dataset.

To learn more about this project, please visit the [Opera GitHub Repository](https://github.com/justinthelaw/opera).

# Table of Contents

- [Model Card for Opera Bullet Interpreter](#model-card-for--model_id-)
- [Table of Contents](#table-of-contents)
- [Model Details](#model-details)
- [Uses](#uses)
- [Bias, Risks, and Limitations](#bias-risks-and-limitations)
- [Training Details](#training-details)
- [Evaluation](#evaluation)
- [Model Examination](#model-examination)
- [Environmental Impact](#environmental-impact)
- [Technical Specifications [optional]](#technical-specifications-optional)
- [Citation](#citation)
- [Model Card Authors](#model-card-authors-optional)
- [Model Card Contact](#model-card-contact)
- [How to Get Started with the Model](#how-to-get-started-with-the-model)

# Model Details

## Model Description

An unofficial United States Air Force and Space Force performance statement "translation" model. Takes a properly formatted performance statement, also known as a "bullet," as an input and outputs a long-form sentence, using plain english, describing the accomplishments captured within the bullet.

This is a fine-tuned version of the LaMini-Flan-T5-783M, using the justinthelaw/opera-bullet-completions (private) dataset.

- **Developed by:** Justin Law, Alden Davidson, Christopher Kodama, My Tran
- **Model type:** Language Model
- **Language(s) (NLP):** en
- **License:** apache-2.0
- **Parent Model:** [LaMini-Flan-T5-783M](https://huggingface.co/MBZUAI/LaMini-Flan-T5-783M)
- **Resources for more information:** More information needed
  - [GitHub Repo](https://github.com/justinthelaw/opera)
  - [Associated Paper](https://huggingface.co/MBZUAI/LaMini-Flan-T5-783M)

# Uses

## Direct Use

Used to programmatically produce training data for Opera's Bullet Forge (see GitHub repository for details).

## Downstream Use [Optional]

Used to quickly interpret bullets written by Airman (Air Force) or Guardians (Space Force), into long-form, plain English sentences.

## Out-of-Scope Use

Generating bullets from long-form, plain English sentences. General NLP functionality.

# Bias, Risks, and Limitations

Specialized acronyms or abbreviations specific to small units may not be transformed properly. Bullets in highly non-standard formats may result in lower quality results.

## Recommendations

Look-up acronyms to ensure the correct narrative is being formed. Double-check (spot check) bullets with slightly more complex acronyms and abbreviations for narrative precision.

# Training Details

## Training Data

pre-processing or additional filtering. -->

The model was fine-tuned on the justinthelaw/opera-bullet-completions dataset, which can be partially found at the GitHub repository.

## Training Procedure

### Preprocessing

The justinthelaw/opera-bullet-completions dataset was created using a custom Python web-scraper, along with some custom cleaning functions, all of which can be found at the GitHub repository.

### Speeds, Sizes, Times

It takes approximately 3-5 seconds per inference when using any standard-sized Air and Space Force bullet statement.

# Evaluation

## Testing Data, Factors & Metrics

### Testing Data

20% of the justinthelaw/opera-bullet-completions dataset was used to validate the model's performance.

### Factors

Repitition, contextual loss, and bullet format are all loss factors tied into the backward propogation calculations and validation steps.

### Metrics

ROGUE scores were computed and averaged. These may be provided in future iterations of this model's development.

## Results

# Model Examination

More information needed

# Environmental Impact

- **Hardware Type:** 2.6 GHz 6-Core Intel Core i7, 16 GB 2667 MHz DDR4, AMD Radeon Pro 5300M 4 GB
- **Hours used:** 18
- **Cloud Provider:** N/A
- **Compute Region:** N/A
- **Carbon Emitted:** N/A

# Technical Specifications

### Hardware

2.6 GHz 6-Core Intel Core i7, 16 GB 2667 MHz DDR4, AMD Radeon Pro 5300M 4 GB

### Software

VSCode, Jupyter Notebook, Python3, PyTorch, Transformers, Pandas, Asyncio, Loguru, Rich

# Citation

**BibTeX:**

@article{lamini-lm,
author = {Minghao Wu and
Abdul Waheed and
Chiyu Zhang and
Muhammad Abdul-Mageed and
Alham Fikri Aji
},
title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions},
journal = {CoRR},
volume = {abs/2304.14402},
year = {2023},
url = {https://arxiv.org/abs/2304.14402},
eprinttype = {arXiv},
eprint = {2304.14402}
}

# Model Card Authors

construction? Etc. -->

Justin Law, Alden Davidson, Christopher Kodama, My Tran

# Model Card Contact

Email: [email protected]

# How to Get Started with the Model

Use the code below to get started with the model.

<details>
<summary> Click to expand </summary>

```python
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer

bullet_data_creation_prefix = (
    "Using upwards of 3 sentences, expand upon the following Air and Space Force bullet statement by "
    + "spelling-out acronyms and adding additional context that is not already included in the Air and Space Force bullet statement: "
)

# Path of the pre-trained model that will be used
model_path = "justinthelaw/opera-bullet-interpreter"
# Path of the pre-trained model tokenizer that will be used
# Must match the model checkpoint's signature
tokenizer_path = "justinthelaw/opera-bullet-interpreter"
# Max length of tokens a user may enter for summarization
# Increasing this beyond 512 may increase compute time significantly
max_input_token_length = 512
# Max length of tokens the model should output for the summary
# Approximately the number of tokens it may take to generate a bullet
max_output_token_length = 512
# Beams to use for beam search algorithm
# Increased beams means increased quality, but increased compute time
number_of_beams = 6
# Scales logits before soft-max to control randomness
# Lower values (~0) make output more deterministic
temperature = 0.5
# Limits generated tokens to top K probabilities
# Reduces chances of rare word predictions
top_k = 50
# Applies nucleus sampling, limiting token selection to a cumulative probability
# Creates a balance between randomness and determinism
top_p = 0.90

try:
    tokenizer = T5Tokenizer.from_pretrained(
        f"{model_path}",
        model_max_length=max_input_token_length,
        add_special_tokens=False,
    )
    input_model = T5ForConditionalGeneration.from_pretrained(f"{model_path}")
    logger.info(f"Loading {model_path}...")
    # Set device to be used based on GPU availability
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    # Model is sent to device for use
    model = input_model.to(device)  # type: ignore

    input_text = bullet_data_creation_prefix + input("Input a US Air or Space Force bullet: ")

    encoded_input_text = tokenizer.encode_plus(
        input_text,
        return_tensors="pt",
        truncation=True,
        max_length=max_input_token_length,
    )

    # Generate summary
    summary_ids = model.generate(
        encoded_input_text["input_ids"],
        attention_mask=encoded_input_text["attention_mask"],
        max_length=max_output_token_length,
        num_beams=number_of_beams,
        temperature=temperature,
        top_k=top_k,
        top_p=top_p,
        early_stopping=True,
    )

    output_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)

    # input_text and output_text insert into data sets
    print(input_line["output"] + "\n\t" + output_text)

except KeyboardInterrupt:
    print("Received interrupt, stopping script...")
except Exception as e:
    print(f"An error occurred during generation: {e}")
```

</details>