--- language: ja thumbnail: https://github.com/ycat3/japanese-pretrained-models/blob/master/jweb.png tags: - ja - japanese - gpt2 - text-generation - lm - nlp - rust - rust-bert license: mit datasets: - cc100 - wikipedia - AozoraBunko widget: - text: "夏目漱石は、" --- # japanese-soseki-gpt2-1b ![jweb-icon](./jweb.png) This repository provides a 1.3B-parameter finetuned Japanese GPT2 model. The model was finetuned by [jweb](https://jweb.asia/) based on trained by [rinna Co., Ltd.](https://corp.rinna.co.jp/) Both pytorch(pytorch_model.bin) and Rust(rust_model.ot) models are provided # How to use the model *NOTE:* Use `T5Tokenizer` to initiate the tokenizer. python ~~~~ import torch from transformers import T5Tokenizer, AutoModelForCausalLM tokenizer = T5Tokenizer.from_pretrained("jweb/japanese-soseki-gpt2-1b") model = AutoModelForCausalLM.from_pretrained("jweb/japanese-soseki-gpt2-1b") if torch.cuda.is_available(): model = model.to("cuda") text = "夏目漱石は、" token_ids = tokenizer.encode(text, add_special_tokens=False, return_tensors="pt") with torch.no_grad(): output_ids = model.generate( token_ids.to(model.device), max_length=128, min_length=40, do_sample=True, repetition_penalty= 1.6, early_stopping= True, num_beams= 5, temperature= 1.0, top_k=500, top_p=0.95, pad_token_id=tokenizer.pad_token_id, bos_token_id=tokenizer.bos_token_id, eos_token_id=tokenizer.eos_token_id, ) output = tokenizer.decode(output_ids.tolist()[0]) print(output) # sample output: 夏目漱石は、明治時代を代表する文豪です。夏目漱石の代表作は「吾輩は猫である」や「坊っちゃん」、「草枕」「三四郎」、それに「虞美人草(ぐびじんそう)」などたくさんあります。 ~~~~ rust ~~~~ use rust_bert::gpt2::GPT2Generator; use rust_bert::pipelines::common::{ModelType, TokenizerOption}; use rust_bert::pipelines::generation_utils::{GenerateConfig, LanguageGenerator}; use rust_bert::resources::{ RemoteResource, ResourceProvider}; use tch::Device; fn main() -> anyhow::Result<()> { let model_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/rust_model.ot".into(), cache_subdir: "japanese-soseki-gpt2-1b/model".into(), }); let config_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/config.json".into(), cache_subdir: "japanese-soseki-gpt2-1b/config".into(), }); let vocab_resource = Box::new(RemoteResource { url: "https://huggingface.co/jweb/japanese-soseki-gpt2-1b/resolve/main/spiece.model".into(), cache_subdir: "japanese-soseki-gpt2-1b/vocab".into(), }); let vocab_resource_token = vocab_resource.clone(); let merges_resource = vocab_resource.clone(); let generate_config = GenerateConfig { model_resource, config_resource, vocab_resource, merges_resource, // not used device: Device::Cpu, repetition_penalty: 1.6, min_length: 40, max_length: 128, do_sample: true, early_stopping: true, num_beams: 5, temperature: 1.0, top_k: 500, top_p: 0.95, ..Default::default() }; let tokenizer = TokenizerOption::from_file( ModelType::T5, vocab_resource_token.get_local_path().unwrap().to_str().unwrap(), None, true, None, None, )?; let mut gpt2_model = GPT2Generator::new_with_tokenizer(generate_config, tokenizer.into())?; gpt2_model.set_device(Device::cuda_if_available()); let input_text = "夏目漱石は、"; let t1 = std::time::Instant::now(); let output = gpt2_model.generate(Some(&[input_text]), None); println!("{}", output[0].text); println!("Elapsed Time(ms):{}",t1.elapsed().as_millis()); Ok(()) } // sample output: 夏目漱石は、明治から大正にかけて活躍した日本の小説家です。彼は「吾輩は猫である」や「坊っちゃん」、「草枕」「三四郎」、あるいは「虞美人草」などの小説で知られていますが、「明暗」のような小説も書いていました。 ~~~~ # Model architecture A 24-layer, 2048-hidden-size transformer-based language model. # Training The model was trained on [Japanese C4](https://huggingface.co/datasets/allenai/c4), [Japanese CC-100](http://data.statmt.org/cc-100/ja.txt.xz) and [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch) to optimize a traditional language modelling objective. It reaches around 14 perplexity on a chosen validation set from the same data. # Finetuning The model was finetuned on [Aozorabunko](https://github.com/aozorabunko/aozorabunko), especially Natume Soseki books. # Tokenization The model uses a [sentencepiece](https://github.com/google/sentencepiece)-based tokenizer. The vocabulary was first trained on a selected subset from the training data using the official sentencepiece training script, and then augmented with emojis and symbols. # Licenese [The MIT license](https://opensource.org/licenses/MIT)