Update README.md
Browse files
README.md
CHANGED
@@ -5,8 +5,21 @@ base_model:
|
|
5 |
pipeline_tag: image-to-image
|
6 |
---
|
7 |
```
|
|
|
|
|
|
|
|
|
|
|
8 |
from transformers import AutoConfig, AutoModel, ModelCard
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Load the gray-inpaint model
|
11 |
gray_inpaintor = AutoModel.from_pretrained(
|
12 |
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
|
@@ -14,25 +27,24 @@ gray_inpaintor = AutoModel.from_pretrained(
|
|
14 |
trust_remote_code=True,
|
15 |
)
|
16 |
|
17 |
-
|
18 |
gray2rgb = AutoModel.from_pretrained(
|
19 |
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
|
20 |
subfolder='gray2rgb',
|
21 |
trust_remote_code=True,
|
22 |
)
|
23 |
|
24 |
-
|
25 |
-
# Move models to GPU
|
26 |
-
gray2rgb.to('cuda')
|
27 |
gray_inpaintor.to('cuda')
|
|
|
28 |
|
29 |
-
# Enable memory-efficient attention
|
30 |
-
gray2rgb.unet.enable_xformers_memory_efficient_attention()
|
31 |
-
gray_inpaintor.unet.enable_xformers_memory_efficient_attention()
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
```
|
|
|
5 |
pipeline_tag: image-to-image
|
6 |
---
|
7 |
```
|
8 |
+
import torch
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
from diffusers.utils import load_image
|
13 |
from transformers import AutoConfig, AutoModel, ModelCard
|
14 |
|
15 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
16 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
17 |
+
|
18 |
+
image_gray = load_image(img_url).resize((512, 512)).convert('L').convert('RGB') # image must be 3 channel
|
19 |
+
mask_image = load_image(mask_url).resize((512, 512))
|
20 |
+
mask = (np.array(mask_image)>128)*1
|
21 |
+
image_gray_masked = Image.fromarray(((1-mask) * np.array(image_gray)).astype(np.uint8))
|
22 |
+
|
23 |
# Load the gray-inpaint model
|
24 |
gray_inpaintor = AutoModel.from_pretrained(
|
25 |
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
|
|
|
27 |
trust_remote_code=True,
|
28 |
)
|
29 |
|
30 |
+
Load the gray2rgb model
|
31 |
gray2rgb = AutoModel.from_pretrained(
|
32 |
'jwengr/stable-diffusion-2-gray-inpaint-to-rgb',
|
33 |
subfolder='gray2rgb',
|
34 |
trust_remote_code=True,
|
35 |
)
|
36 |
|
37 |
+
Move models to GPU
|
|
|
|
|
38 |
gray_inpaintor.to('cuda')
|
39 |
+
gray2rgb.to('cuda')
|
40 |
|
41 |
+
# Enable memory-efficient attention
|
42 |
+
# gray2rgb.unet.enable_xformers_memory_efficient_attention()
|
43 |
+
# gray_inpaintor.unet.enable_xformers_memory_efficient_attention()
|
44 |
|
45 |
+
with torch.autocast('cuda',dtype=torch.bfloat16):
|
46 |
+
with torch.no_grad():
|
47 |
+
# each model's input image should be one of PIL.Image, List[PIL.Image], preprocessed tensor (B,3,H,W). Image must be 3 channel
|
48 |
+
image_gray_restored = gray_inpaintor(image_gray_masked, num_inference_steps=250, seed=10)[0].convert('L') # you can pass 'mask' arg explictly. mask : Tensor (B,1,512,512)
|
49 |
+
image_restored = gray2rgb(image_gray_restored.convert('RGB'))
|
50 |
```
|