{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8a72075200>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1024732, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685130012763312024, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHtrW76Uz/M+81vMPpG/jD2P1Ta/MTEuP/F3Ob7NCTy/q+gjP/k3TT5xOIm9/biJPF3sh78KlUU/zAouPw/T2z52eKA/6Q7SPygClj6Ypfq+8A9BvxedojwWQto+nF+UPpehOD9I2+U+bnf9v7jdOz8uPIg+DhwDvhYf6D5DA4M/8nkwPK7FZb8NZKO+/mbdvdajAz6Wjv0//LYgvtbrqr+9GJg+Z7e2PwEemz4aNsg/Lj/KvmWI8z+JroC+Z1a/PsJ/t76YXFI+jvcsP9p0CD9merG/SNvlPoZHAT8PbK6/gGtwv4IIKEAV/mbA9QyFv+0PiT0Sac09mHYFP4Halj7yEgHAR/cIvZXMqb1UmRK8yjvmPv260btct1I9PRbZPFlHoz9pLI+8aFxPPzT+Dz07kWE9rBdnvNDSSL8MI6G8l6E4P0jb5T6GRwE/uN07P+Suc76lqAdA/cSkv2SMZD/2Mss+rFEvP9Dnqb1ZCzy/5NOiPiYuyD+23xU+hlh8PlVBk7+Jzsa+3/IpP3IbCr/3/N4+iZwpvzjrwz7Vnl4/bJk8v4evkj4OkQi/87YjvJehOD/3jg7AhkcBPw9srr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAvcpy2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAJHgtvQAAAADY2fS/AAAAANLPB74AAAAAs73iPwAAAADhjMO9AAAAACjW/D8AAAAAErKUPAAAAAA0Le+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6NWRtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgDPQpT0AAAAAMmj1vwAAAABEu6Q9AAAAAHM26T8AAAAA+AYJvgAAAABZuPg/AAAAAFqqSz0AAAAASdfmvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMtY2LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDYIDq8AAAAACpC2b8AAAAALZkMvgAAAAA+Yd4/AAAAAOZvyb0AAAAAWdnnPwAAAAD15Gc9AAAAANEK278AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACX7cg2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAxPwNvgAAAAAqy/G/AAAAAAMRCL0AAAAA8DjePwAAAADLLos9AAAAAJlk6T8AAAAAUSCkvQAAAADkh/W/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.48764799999999997, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ/pSckMTeyMAWyUTegDjAF0lEdAoCk0k4WDYnV9lChoBkdAn9jUU9IPLGgHTegDaAhHQKAqPJ17pmp1fZQoaAZHQJzxjx5LRKJoB03oA2gIR0CgMWxlQMx5dX2UKGgGR0CLv+knkT6BaAdN6ANoCEdAoDK4CGN70HV9lChoBkdAnMwSblRxcWgHTegDaAhHQKA2nk1/DtR1fZQoaAZHQJ8r08JUo8ZoB03oA2gIR0CgN6fX5FgEdX2UKGgGR0Ccwdtuk1uSaAdN6ANoCEdAoD/C3NLUTnV9lChoBkdAm9RzFhoduGgHTegDaAhHQKBBscfeUIN1fZQoaAZHQJ6EYGIKtxNoB03oA2gIR0CgR8fOUt7KdX2UKGgGR0CezgZtvXK9aAdN6ANoCEdAoEk3T3IuG3V9lChoBkdAoAocNe+mFmgHTegDaAhHQKBQVQzk6tF1fZQoaAZHQJt5n8qFyrBoB03oA2gIR0CgUZlWXC0odX2UKGgGR0Cc6a4gRsdlaAdN6ANoCEdAoFV8+u/1x3V9lChoBkdAoC6OGmDUVmgHTegDaAhHQKBWieEIw/R1fZQoaAZHQJxKbetSydFoB03oA2gIR0CgXhZcC5mRdX2UKGgGR0CgCrbngYP5aAdN6ANoCEdAoF/opQUHp3V9lChoBkdAoBgREUj9oGgHTegDaAhHQKBlyBas6q91fZQoaAZHQKCL1BJI1+BoB03oA2gIR0CgZ24wIt17dX2UKGgGR0CfegqT8pCsaAdN6ANoCEdAoG8Vct5D7nV9lChoBkdAng8NYOlO5GgHTegDaAhHQKBwXhhpg1F1fZQoaAZHQJ/IZo9LYf5oB03oA2gIR0CgdEb5mAbydX2UKGgGR0Cex3/MGHHnaAdN6ANoCEdAoHVZaFEiMnV9lChoBkdAoJJWIbfgrGgHTegDaAhHQKB8kU2UB4l1fZQoaAZHQJxorDbah6BoB03oA2gIR0Cgfm2fTTfBdX2UKGgGR0Cdq/WWyC4CaAdN6ANoCEdAoIRPndO6/nV9lChoBkdAnvnuHBUJfWgHTegDaAhHQKCF+IVuaWp1fZQoaAZHQJ/VV7jT8YRoB03oA2gIR0CgjkV3Ux20dX2UKGgGR0CgDAqlHjIaaAdN6ANoCEdAoI+Pp6hQFnV9lChoBkdAoPcdiUgSvmgHTegDaAhHQKCTahdMTOB1fZQoaAZHQJI1Odf9gndoB03oA2gIR0CglIAZ88cNdX2UKGgGR0CVqBQwblzVaAdN6ANoCEdAoJvOLtNSInV9lChoBkdAoGahwZOzp2gHTegDaAhHQKCdIL9/BnB1fZQoaAZHQIu6NtfoicJoB03oA2gIR0CgowNQbdaddX2UKGgGR0CgZ+Mt03fiaAdN6ANoCEdAoKSr9qDbrXV9lChoBkdAoQ2I7vG6w2gHTegDaAhHQKCtlt2s7uF1fZQoaAZHQKBZWnWJ79hoB03oA2gIR0Cgru3xvvSddX2UKGgGR0CguJy0jTrnaAdN6ANoCEdAoLLOyX2M9HV9lChoBkdAoFCQSnLq2WgHTegDaAhHQKCz3vYODrZ1fZQoaAZHQKF+Ebz9S/FoB03oA2gIR0CguxxeC04SdX2UKGgGR0Cg5dofjjrBaAdN6ANoCEdAoLx1IPK+z3V9lChoBkdAoU252dNFjWgHTegDaAhHQKDB5Wy1NQF1fZQoaAZHQJqhQ6p5u65oB03oA2gIR0Cgw5eee4CqdX2UKGgGR0CguQn/kvK2aAdN6ANoCEdAoM0C0BwMpnV9lChoBkdAoAB5NKyv92gHTegDaAhHQKDOUnTAnD11fZQoaAZHQKD+Y5c1O0toB03oA2gIR0Cg0hGI0qH5dX2UKGgGR0CaDDlDF6zFaAdN6ANoCEdAoNMX6VMVUXV9lChoBkdAoMSOiDdxhmgHTegDaAhHQKDaHPIn0Cl1fZQoaAZHQJsJLhky1u1oB03oA2gIR0Cg21z1bqyGdX2UKGgGR0CT+pRYigTRaAdN6ANoCEdAoN/NapxWDHV9lChoBkdAoAD+ymhufmgHTegDaAhHQKDhVZElVtJ1fZQoaAZHQJsh8GY8dPtoB03oA2gIR0Cg68Cz9jwydX2UKGgGR0CgMF/IjnmraAdN6ANoCEdAoO0YhKUVz3V9lChoBkdAn3koMBp5/2gHTegDaAhHQKDw+Ut7KJV1fZQoaAZHQKCxLapxWDJoB03oA2gIR0Cg8gXNs3yadX2UKGgGR0ChKnCV8kUsaAdN6ANoCEdAoPkp7HAAQ3V9lChoBkdAoEVcGZ/kNmgHTegDaAhHQKD6b5mh/RV1fZQoaAZHQJ/Shd9lVcVoB03oA2gIR0Cg/p3W4EwGdX2UKGgGR0CgwNzfBN21aAdN6ANoCEdAoQA2/SH/LnV9lChoBkdAnYiaFZgXuWgHTegDaAhHQKELQxiXpnp1fZQoaAZHQJ56tQtSQ5poB03oA2gIR0ChDWtiH6/JdX2UKGgGR0CdF4BH09QoaAdN6ANoCEdAoRPkm+j/MnV9lChoBkdAoTIcfYBeX2gHTegDaAhHQKEVpL7oB7x1fZQoaAZHQJPlsFmnO0NoB03oA2gIR0ChHMoEbHZLdX2UKGgGR0CTvntDD0lJaAdN6ANoCEdAoR4TFl05l3V9lChoBkdAmPV4DcM3ImgHTegDaAhHQKEh9mZE2Hd1fZQoaAZHQJI4+4z7/GVoB03oA2gIR0ChIwy5RTCMdX2UKGgGR0CRsk8xsVL0aAdN6ANoCEdAoStuHN5dGHV9lChoBkdAnFcGUnogWGgHTegDaAhHQKEtWJgsshB1fZQoaAZHQJ34KQOnVG1oB03oA2gIR0ChM88JtzjndX2UKGgGR0CZZyVbiZOSaAdN6ANoCEdAoTWEm6XjVHV9lChoBkdAkJ5is4ku6GgHTegDaAhHQKE9TwmVqvh1fZQoaAZHQJDMS/mDDj1oB03oA2gIR0ChPq6gmJFcdX2UKGgGR0CWNbRT0g8saAdN6ANoCEdAoUKAztTkyXV9lChoBkdAlXMa6vq1PWgHTegDaAhHQKFDjqD9Oyp1fZQoaAZHQJHfnyy2QXBoB03oA2gIR0ChSv5jQRf4dX2UKGgGR0CTQD/WDpTuaAdN6ANoCEdAoUzmUhV2inV9lChoBkdAkf4gH/tICmgHTegDaAhHQKFTIjKPn0V1fZQoaAZHQI5MJhpg1FZoB03oA2gIR0ChVOscABDHdX2UKGgGR0CYbG8Md92HaAdN6ANoCEdAoVzv6dlNDnV9lChoBkdAk48ASSNfgWgHTegDaAhHQKFeUNvwVj91fZQoaAZHQJJjq0lZ5iVoB03oA2gIR0ChYlBXKbKBdX2UKGgGR0CUONJoTPB0aAdN6ANoCEdAoWNry8SPEXV9lChoBkdAnXt35nDiwWgHTegDaAhHQKFq/Fkxyn11fZQoaAZHQJdEuJtSAH5oB03oA2gIR0ChbNtHxz7udX2UKGgGR0CbHNqOLiuMaAdN6ANoCEdAoXLKVjZtenV9lChoBkdAi2ExHoX9BWgHTegDaAhHQKF0fPk7wKB1fZQoaAZHQJ7Jl4LThHdoB03oA2gIR0ChfMPZIxxldX2UKGgGR0CfiAUcn3L3aAdN6ANoCEdAoX4e6TW5H3V9lChoBkdAmiUH0Gu9vmgHTegDaAhHQKGCLJdSl311fZQoaAZHQJMG84HX2/VoB03oA2gIR0ChgzsG5c1PdX2UKGgGR0CfCn0r9VFQaAdN6ANoCEdAoYqBUzbeuXV9lChoBkdAn+hn0PH1e2gHTegDaAhHQKGMXwuM+/x1fZQoaAZHQJ4ApyfcvdxoB03oA2gIR0ChkkNTUAktdX2UKGgGR0CfQLP1L8JlaAdN6ANoCEdAoZP1/lQuVXV9lChoBkdAn7/jzErGzmgHTegDaAhHQKGcWVclgMN1fZQoaAZHQJ7Ig25xzaNoB03oA2gIR0ChnaLk8zRAdX2UKGgGR0CfGUCYkVvdaAdN6ANoCEdAoaGzCk43m3V9lChoBkdAnhDTMV1wHmgHTegDaAhHQKGiwdELH+91fZQoaAZHQJV0pjZteldoB03oA2gIR0Chqh59mYjTdX2UKGgGR0CLqTAVO9FnaAdN6ANoCEdAoaunsu3+dnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32022, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}