a2c-PandaReachDense-v2 / config.json
jwoods's picture
Initial commit
0c35faa
raw
history blame
15.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f8a7206a440>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f8a72075340>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 122296, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685136169161794654, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAUahIv+54Bb/zmYm8JE4Bv6cnrj+M3qM/SwohP18wmj5xg4W/DPb4Prn7Nr9z/Iy/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAO0lmv4msQL+0574+YxdPv8X21D97Bqw/yUp1P978oz5ZgHS/6U9zP/14GL9Kyam/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABRqEi/7ngFv/OZibxsrQg/+bDWPXxP7j4kTgG/pyeuP4zeoz8cBbK+xXGvPyxOWj9LCiE/XzCaPnGDhb8dHne+OSmUv/8cbb8M9vg+ufs2v3P8jL9bHzk/Ww4GvOY1rbyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.7838183 -0.5213765 -0.01679704]\n [-0.5050986 1.3605851 1.2802291 ]\n [ 0.6290633 0.3011503 -1.0430738 ]\n [ 0.4862522 -0.7147785 -1.1014541 ]]", "desired_goal": "[[-0.8995549 -0.7526327 0.3728615 ]\n [-0.8089506 1.6637808 1.3439478 ]\n [ 0.9581724 0.3202886 -0.95508343]\n [ 0.9504381 -0.59559613 -1.3264554 ]]", "observation": "[[-0.7838183 -0.5213765 -0.01679704 0.5338962 0.10482974 0.46545017]\n [-0.5050986 1.3605851 1.2802291 -0.34769523 1.3706595 0.8527553 ]\n [ 0.6290633 0.3011503 -1.0430738 -0.24132581 -1.157508 -0.9262237 ]\n [ 0.4862522 -0.7147785 -1.1014541 0.7231347 -0.00818213 -0.02114386]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAASdoOvo7rjT2INjg9Me+/PA7ZID088wA+R0HkPcFoNj0fNmg+X7PpvahShjsJlhg8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.13950457 0.06929694 0.04497388]\n [ 0.02342949 0.0392695 0.12592787]\n [ 0.11145263 0.04453349 0.22676896]\n [-0.11411165 0.00409921 0.00931311]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.75544, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIoI1cN6W8+7+UhpRSlIwBbJRLMowBdJRHQHVR29pRGc51fZQoaAZoCWgPQwgP8Q9benT3v5SGlFKUaBVLMmgWR0B1T3XWe6I4dX2UKGgGaAloD0MIf4Y3a/B++b+UhpRSlGgVSzJoFkdAdUzo+fRNRHV9lChoBmgJaA9DCIEmwoanl/q/lIaUUpRoFUsyaBZHQHVKSqEOAiF1fZQoaAZoCWgPQwh6whIPKNv4v5SGlFKUaBVLMmgWR0B1WxMi8nNQdX2UKGgGaAloD0MIxt/2BInt+7+UhpRSlGgVSzJoFkdAdViv0RODa3V9lChoBmgJaA9DCGn+mNamcf6/lIaUUpRoFUsyaBZHQHVWLj94u9R1fZQoaAZoCWgPQwizJhb4ii78v5SGlFKUaBVLMmgWR0B1U5LoOhCddX2UKGgGaAloD0MIqOMxA5Xx+r+UhpRSlGgVSzJoFkdAdWcFYdQwbnV9lChoBmgJaA9DCIV4JF6ezvi/lIaUUpRoFUsyaBZHQHVkodU83dd1fZQoaAZoCWgPQwimXrcIjDX6v5SGlFKUaBVLMmgWR0B1YhqqOtGNdX2UKGgGaAloD0MI+1sC8E9p9b+UhpRSlGgVSzJoFkdAdV9/+sHSnnV9lChoBmgJaA9DCP7uHTUmhP+/lIaUUpRoFUsyaBZHQHVzDgdfb9J1fZQoaAZoCWgPQwjScqCH2nb+v5SGlFKUaBVLMmgWR0B1cKoLofSydX2UKGgGaAloD0MI95MxPswe/b+UhpRSlGgVSzJoFkdAdW4i4J/oaHV9lChoBmgJaA9DCDRkPEolfP2/lIaUUpRoFUsyaBZHQHVrhltj0+V1fZQoaAZoCWgPQwhiaeBHNSz9v5SGlFKUaBVLMmgWR0B1fxeTmnwYdX2UKGgGaAloD0MI88r1tpnK+b+UhpRSlGgVSzJoFkdAdXy1+RYA83V9lChoBmgJaA9DCKkWEcXkjfW/lIaUUpRoFUsyaBZHQHV6L+T/yXl1fZQoaAZoCWgPQwgtW+uLhHb6v5SGlFKUaBVLMmgWR0B1d5T0g8r7dX2UKGgGaAloD0MI3ZkJhnON+7+UhpRSlGgVSzJoFkdAdYxyy2QXAXV9lChoBmgJaA9DCFJJnYAmAv2/lIaUUpRoFUsyaBZHQHWKECmuTzN1fZQoaAZoCWgPQwi9yAT8Gon2v5SGlFKUaBVLMmgWR0B1h4xVQyh0dX2UKGgGaAloD0MI2SYVjbU//L+UhpRSlGgVSzJoFkdAdYTxKQJXyXV9lChoBmgJaA9DCEAUzJiC9fi/lIaUUpRoFUsyaBZHQHWaO3MINVl1fZQoaAZoCWgPQwh4YADhQ8n3v5SGlFKUaBVLMmgWR0B1l9mmLtNSdX2UKGgGaAloD0MIUprN4zDY8b+UhpRSlGgVSzJoFkdAdZVShakhzXV9lChoBmgJaA9DCC+kw0MYv/S/lIaUUpRoFUsyaBZHQHWSvDxb0OF1fZQoaAZoCWgPQwhsQIS4cnb7v5SGlFKUaBVLMmgWR0B1p6UY8+zMdX2UKGgGaAloD0MIjq7S3XX2+b+UhpRSlGgVSzJoFkdAdaVCtzS1E3V9lChoBmgJaA9DCLSvPEhPEfu/lIaUUpRoFUsyaBZHQHWiwSWZ7Xx1fZQoaAZoCWgPQwhEGapiKv36v5SGlFKUaBVLMmgWR0B1oCWBz3h5dX2UKGgGaAloD0MIizVc5J5u/b+UhpRSlGgVSzJoFkdAdbSu/UONHnV9lChoBmgJaA9DCLeZCvFIfPi/lIaUUpRoFUsyaBZHQHWyTjzZpSJ1fZQoaAZoCWgPQwg0orQ3+ML9v5SGlFKUaBVLMmgWR0B1r8khRqGldX2UKGgGaAloD0MImbnA5bHm+7+UhpRSlGgVSzJoFkdAda0wL3K0U3V9lChoBmgJaA9DCLnfoSjQZ/a/lIaUUpRoFUsyaBZHQHW+2USqU/x1fZQoaAZoCWgPQwjarWUyHE/6v5SGlFKUaBVLMmgWR0B1vHEDQqqfdX2UKGgGaAloD0MIlkIglzgy+7+UhpRSlGgVSzJoFkdAdbnnR9gF5nV9lChoBmgJaA9DCCApIsMqXva/lIaUUpRoFUsyaBZHQHW3RpL26Cl1fZQoaAZoCWgPQwj/BYIAGXr0v5SGlFKUaBVLMmgWR0B1xj2kBS1mdX2UKGgGaAloD0MIhJ84gH4f+b+UhpRSlGgVSzJoFkdAdcPVqveP73V9lChoBmgJaA9DCF2nkZbKW/e/lIaUUpRoFUsyaBZHQHXBSq6vq1R1fZQoaAZoCWgPQwiUMqmhDQD7v5SGlFKUaBVLMmgWR0B1vqpkwvg4dX2UKGgGaAloD0MISz0LQnlf/L+UhpRSlGgVSzJoFkdAdc4J9iMHbHV9lChoBmgJaA9DCD1Geebl8Pi/lIaUUpRoFUsyaBZHQHXLoqgAZKp1fZQoaAZoCWgPQwht/fSfNf/5v5SGlFKUaBVLMmgWR0B1yRpEhJRPdX2UKGgGaAloD0MIglg2c0jq+L+UhpRSlGgVSzJoFkdAdcZ6JIlMRHV9lChoBmgJaA9DCKc/+5EiMv2/lIaUUpRoFUsyaBZHQHXVau0TlDF1fZQoaAZoCWgPQwi0W8tkOB79v5SGlFKUaBVLMmgWR0B10wJ+lTFVdX2UKGgGaAloD0MIboWwGktY97+UhpRSlGgVSzJoFkdAddB2SdOIqXV9lChoBmgJaA9DCJeNzvkpDv+/lIaUUpRoFUsyaBZHQHXN1jd56dF1fZQoaAZoCWgPQwjBjv8CQcD6v5SGlFKUaBVLMmgWR0B13SIj4YaYdX2UKGgGaAloD0MIWwndJXHW+r+UhpRSlGgVSzJoFkdAddq5+6RQrXV9lChoBmgJaA9DCOQvLeqTXPW/lIaUUpRoFUsyaBZHQHXYLel9Brx1fZQoaAZoCWgPQwgcCTTY1Dn2v5SGlFKUaBVLMmgWR0B11Y4ecQRPdX2UKGgGaAloD0MIIqZEEr1M/r+UhpRSlGgVSzJoFkdAdeSjeKsMiXV9lChoBmgJaA9DCH/4+e/Bq/e/lIaUUpRoFUsyaBZHQHXiPBeokzJ1fZQoaAZoCWgPQwiUvaWcLzb7v5SGlFKUaBVLMmgWR0B1369i+cpcdX2UKGgGaAloD0MIE0ceiCzS+7+UhpRSlGgVSzJoFkdAdd0ObiIcinV9lChoBmgJaA9DCF3+Q/rtK/u/lIaUUpRoFUsyaBZHQHXrxQ79ycV1fZQoaAZoCWgPQwgVjbW/s/34v5SGlFKUaBVLMmgWR0B16V5OafBfdX2UKGgGaAloD0MItrxyvW0mAMCUhpRSlGgVSzJoFkdAdebTa0x/NXV9lChoBmgJaA9DCBugNNQo5Pm/lIaUUpRoFUsyaBZHQHXkMnVoYel1fZQoaAZoCWgPQwjChqdXyvL7v5SGlFKUaBVLMmgWR0B181I1+AmRdX2UKGgGaAloD0MIQxoVONkG9b+UhpRSlGgVSzJoFkdAdfDp84Pwu3V9lChoBmgJaA9DCJZ4QNmUa/a/lIaUUpRoFUsyaBZHQHXuXWe6I311fZQoaAZoCWgPQwiJljyelp/5v5SGlFKUaBVLMmgWR0B1671M/QjVdX2UKGgGaAloD0MIpP/lWrSA9r+UhpRSlGgVSzJoFkdAdfqFRYRuj3V9lChoBmgJaA9DCJ+wxAPK5vm/lIaUUpRoFUsyaBZHQHX4HNke6qd1fZQoaAZoCWgPQwjP2JdsPFjzv5SGlFKUaBVLMmgWR0B19Y/r0J4TdX2UKGgGaAloD0MIlwFnKVkO+L+UhpRSlGgVSzJoFkdAdfLu/1xsEnV9lChoBmgJaA9DCML8FTJXBvu/lIaUUpRoFUsyaBZHQHYCHim2sq91fZQoaAZoCWgPQwhZh6OrdHf8v5SGlFKUaBVLMmgWR0B1/7apPykLdX2UKGgGaAloD0MINgUyO4ue+7+UhpRSlGgVSzJoFkdAdf0p6QeV9nV9lChoBmgJaA9DCENwXMZNzfy/lIaUUpRoFUsyaBZHQHX6iZ8a4tp1fZQoaAZoCWgPQwibIVUUr3L4v5SGlFKUaBVLMmgWR0B2CX2AXl8xdX2UKGgGaAloD0MIJAuYwK07+7+UhpRSlGgVSzJoFkdAdgcV7Qb++HV9lChoBmgJaA9DCKZjzjP2pfm/lIaUUpRoFUsyaBZHQHYEidz4k/t1fZQoaAZoCWgPQwgO3IE65VH7v5SGlFKUaBVLMmgWR0B2Aekyk9EDdX2UKGgGaAloD0MI/g+wVu0a+b+UhpRSlGgVSzJoFkdAdhDmnfl6q3V9lChoBmgJaA9DCNkIxOv6Rfi/lIaUUpRoFUsyaBZHQHYOf4/NZ/11fZQoaAZoCWgPQwg2WDhJ80f5v5SGlFKUaBVLMmgWR0B2C/RJEpiJdX2UKGgGaAloD0MIxTpVvmfk/7+UhpRSlGgVSzJoFkdAdglTs6aLGnV9lChoBmgJaA9DCNnRONTvgve/lIaUUpRoFUsyaBZHQHYYFTR6WxB1fZQoaAZoCWgPQwhortNISyX2v5SGlFKUaBVLMmgWR0B2FazSkTHsdX2UKGgGaAloD0MIp1oLs9CO/b+UhpRSlGgVSzJoFkdAdhMgctGutHV9lChoBmgJaA9DCDG1pQ7y+ve/lIaUUpRoFUsyaBZHQHYQgAZKnNx1fZQoaAZoCWgPQwg+6Nms+tz1v5SGlFKUaBVLMmgWR0B2H0W2w3YMdX2UKGgGaAloD0MISnuDL0zm97+UhpRSlGgVSzJoFkdAdhzj+aScLHV9lChoBmgJaA9DCKJ6a2CrxPm/lIaUUpRoFUsyaBZHQHYaXJYDDCR1fZQoaAZoCWgPQwi5iO/ErJf5v5SGlFKUaBVLMmgWR0B2F8dhiLEUdX2UKGgGaAloD0MIcO6vHvct/L+UhpRSlGgVSzJoFkdAdiaqdH2AXnV9lChoBmgJaA9DCJjaUgd5/fa/lIaUUpRoFUsyaBZHQHYkQ+t8uz11fZQoaAZoCWgPQwjrVzofniX4v5SGlFKUaBVLMmgWR0B2Ibf51vETdX2UKGgGaAloD0MINLkYA+s49r+UhpRSlGgVSzJoFkdAdh8aPjn3c3V9lChoBmgJaA9DCI83+S062fy/lIaUUpRoFUsyaBZHQHYuHTEzfrN1fZQoaAZoCWgPQwgJ/reSHdv6v5SGlFKUaBVLMmgWR0B2K7SmZVn3dX2UKGgGaAloD0MIVACMZ9DQ9b+UhpRSlGgVSzJoFkdAdiko+OfdynV9lChoBmgJaA9DCPYmhuRk4ve/lIaUUpRoFUsyaBZHQHYmiZv1lGx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6114, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}