--- license: - apache-2.0 language: - en tags: - Diffusion Models - Stable Diffusion - Perturbed-Attention Guidance - PAG --- # Perturbed-Attention Guidance for SD 1.5 (i2i) The original Perturbed-Attention Guidance for unconditional models and SD1.5 by [Hyoungwon Cho](https://huggingface.co/hyoungwoncho) is availiable at [hyoungwoncho/sd_perturbed_attention_guidance](https://huggingface.co/hyoungwoncho/sd_perturbed_attention_guidance) [Project](https://ku-cvlab.github.io/Perturbed-Attention-Guidance/) / [arXiv](https://arxiv.org/abs/2403.17377) / [GitHub](https://github.com/KU-CVLAB/Perturbed-Attention-Guidance) This repository is just a simple implementation of the Perturbed-Attention Guidance (PAG) on Stable Diffusion 1.5 (SD 1.5) for the 🧨 diffusers library to "image-to-image". ## Quickstart Loading Custom Pipeline: ```py from diffusers import StableDiffusionImg2ImgPipeline pipe = StableDiffusionImg2ImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", custom_pipeline="jyoung105/sd15_perturbed_attention_guidance_i2i", torch_dtype=torch.float16 ) device="cuda" pipe = pipe.to(device) ``` Unconditional sampling with PAG: ![image/jpeg](example_1.jpg) ```py output = pipe( "", image=init_image, strength=0.6, num_inference_steps=50, guidance_scale=0.0, pag_scale=5.0, pag_applied_layers_index=['m0'] ).images ``` Sampling with PAG and CFG: ![image/jpeg](example_2.jpg) ```py output = pipe( "A man with hoodie on is looking at sky, photo", image=init_image, strength=0.6, num_inference_steps=50, guidance_scale=0.0, pag_scale=5.0, pag_applied_layers_index=['m0'] ).images ``` ## Parameters `guidance_scale` : guidance scale of CFG (ex: `7.5`) `pag_scale` : guidance scale of PAG (ex: `4.0`) `pag_applied_layers`: layer to apply perturbation (ex: ['mid']) `pag_applied_layers_index` : index of the layers to apply perturbation (ex: ['m0', 'm1'])