jyoung105 commited on
Commit
9bfd7b4
1 Parent(s): 8c28906

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +152 -135
README.md CHANGED
@@ -1,198 +1,215 @@
1
  ---
2
- library_name: diffusers
 
 
 
3
  ---
 
 
4
 
5
- # Model Card for Model ID
6
 
7
- <!-- Provide a quick summary of what the model is/does. -->
8
 
 
 
 
 
9
 
 
 
 
 
10
 
11
- ## Model Details
12
 
13
  ### Model Description
14
 
15
- <!-- Provide a longer summary of what this model is. -->
 
 
 
 
16
 
17
- This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.
18
 
19
- - **Developed by:** [More Information Needed]
20
- - **Funded by [optional]:** [More Information Needed]
21
- - **Shared by [optional]:** [More Information Needed]
22
- - **Model type:** [More Information Needed]
23
- - **Language(s) (NLP):** [More Information Needed]
24
- - **License:** [More Information Needed]
25
- - **Finetuned from model [optional]:** [More Information Needed]
26
 
27
- ### Model Sources [optional]
 
28
 
29
- <!-- Provide the basic links for the model. -->
30
-
31
- - **Repository:** [More Information Needed]
32
- - **Paper [optional]:** [More Information Needed]
33
- - **Demo [optional]:** [More Information Needed]
34
-
35
- ## Uses
36
-
37
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
38
-
39
- ### Direct Use
40
-
41
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
42
-
43
- [More Information Needed]
44
-
45
- ### Downstream Use [optional]
46
-
47
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
48
-
49
- [More Information Needed]
50
-
51
- ### Out-of-Scope Use
52
-
53
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
54
-
55
- [More Information Needed]
56
-
57
- ## Bias, Risks, and Limitations
58
-
59
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
60
-
61
- [More Information Needed]
62
-
63
- ### Recommendations
64
-
65
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
66
-
67
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
68
-
69
- ## How to Get Started with the Model
70
-
71
- Use the code below to get started with the model.
72
-
73
- [More Information Needed]
74
-
75
- ## Training Details
76
-
77
- ### Training Data
78
-
79
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
80
-
81
- [More Information Needed]
82
-
83
- ### Training Procedure
84
-
85
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
86
-
87
- #### Preprocessing [optional]
88
-
89
- [More Information Needed]
90
-
91
-
92
- #### Training Hyperparameters
93
-
94
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
95
-
96
- #### Speeds, Sizes, Times [optional]
97
-
98
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
99
-
100
- [More Information Needed]
101
 
102
  ## Evaluation
 
 
 
103
 
104
- <!-- This section describes the evaluation protocols and provides the results. -->
105
 
106
- ### Testing Data, Factors & Metrics
107
 
108
- #### Testing Data
 
 
 
 
 
 
 
 
109
 
110
- <!-- This should link to a Dataset Card if possible. -->
111
 
112
- [More Information Needed]
 
 
113
 
114
- #### Factors
 
115
 
116
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
 
117
 
118
- [More Information Needed]
119
 
120
- #### Metrics
 
121
 
122
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
123
 
124
- [More Information Needed]
 
 
125
 
126
- ### Results
 
 
 
 
 
 
 
 
 
 
 
 
 
127
 
128
- [More Information Needed]
 
 
129
 
130
- #### Summary
131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
 
 
 
 
133
 
134
- ## Model Examination [optional]
 
135
 
136
- <!-- Relevant interpretability work for the model goes here -->
 
 
 
137
 
138
- [More Information Needed]
139
 
140
- ## Environmental Impact
 
141
 
142
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
143
 
144
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
145
 
146
- - **Hardware Type:** [More Information Needed]
147
- - **Hours used:** [More Information Needed]
148
- - **Cloud Provider:** [More Information Needed]
149
- - **Compute Region:** [More Information Needed]
150
- - **Carbon Emitted:** [More Information Needed]
151
 
152
- ## Technical Specifications [optional]
153
 
154
- ### Model Architecture and Objective
 
 
155
 
156
- [More Information Needed]
 
 
 
 
 
157
 
158
- ### Compute Infrastructure
159
 
160
- [More Information Needed]
161
 
162
- #### Hardware
163
 
164
- [More Information Needed]
165
 
166
- #### Software
 
 
167
 
168
- [More Information Needed]
169
 
170
- ## Citation [optional]
 
 
171
 
172
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
 
173
 
174
- **BibTeX:**
175
 
176
- [More Information Needed]
177
 
178
- **APA:**
179
 
180
- [More Information Needed]
181
 
182
- ## Glossary [optional]
183
 
184
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
 
185
 
186
- [More Information Needed]
187
 
188
- ## More Information [optional]
189
 
190
- [More Information Needed]
191
 
192
- ## Model Card Authors [optional]
193
 
194
- [More Information Needed]
195
 
196
- ## Model Card Contact
 
 
 
 
197
 
198
- [More Information Needed]
 
 
1
  ---
2
+ license: openrail++
3
+ tags:
4
+ - text-to-image
5
+ - stable-diffusion
6
  ---
7
+ # SD-XL 1.0-base Model Card
8
+ ![row01](01.png)
9
 
10
+ ## Model
11
 
12
+ ![pipeline](pipeline.png)
13
 
14
+ [SDXL](https://arxiv.org/abs/2307.01952) consists of an [ensemble of experts](https://arxiv.org/abs/2211.01324) pipeline for latent diffusion:
15
+ In a first step, the base model is used to generate (noisy) latents,
16
+ which are then further processed with a refinement model (available here: https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-1.0/) specialized for the final denoising steps.
17
+ Note that the base model can be used as a standalone module.
18
 
19
+ Alternatively, we can use a two-stage pipeline as follows:
20
+ First, the base model is used to generate latents of the desired output size.
21
+ In the second step, we use a specialized high-resolution model and apply a technique called SDEdit (https://arxiv.org/abs/2108.01073, also known as "img2img")
22
+ to the latents generated in the first step, using the same prompt. This technique is slightly slower than the first one, as it requires more function evaluations.
23
 
24
+ Source code is available at https://github.com/Stability-AI/generative-models .
25
 
26
  ### Model Description
27
 
28
+ - **Developed by:** Stability AI
29
+ - **Model type:** Diffusion-based text-to-image generative model
30
+ - **License:** [CreativeML Open RAIL++-M License](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/blob/main/LICENSE.md)
31
+ - **Model Description:** This is a model that can be used to generate and modify images based on text prompts. It is a [Latent Diffusion Model](https://arxiv.org/abs/2112.10752) that uses two fixed, pretrained text encoders ([OpenCLIP-ViT/G](https://github.com/mlfoundations/open_clip) and [CLIP-ViT/L](https://github.com/openai/CLIP/tree/main)).
32
+ - **Resources for more information:** Check out our [GitHub Repository](https://github.com/Stability-AI/generative-models) and the [SDXL report on arXiv](https://arxiv.org/abs/2307.01952).
33
 
34
+ ### Model Sources
35
 
36
+ For research purposes, we recommend our `generative-models` Github repository (https://github.com/Stability-AI/generative-models), which implements the most popular diffusion frameworks (both training and inference) and for which new functionalities like distillation will be added over time.
37
+ [Clipdrop](https://clipdrop.co/stable-diffusion) provides free SDXL inference.
 
 
 
 
 
38
 
39
+ - **Repository:** https://github.com/Stability-AI/generative-models
40
+ - **Demo:** https://clipdrop.co/stable-diffusion
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Evaluation
44
+ ![comparison](comparison.png)
45
+ The chart above evaluates user preference for SDXL (with and without refinement) over SDXL 0.9 and Stable Diffusion 1.5 and 2.1.
46
+ The SDXL base model performs significantly better than the previous variants, and the model combined with the refinement module achieves the best overall performance.
47
 
 
48
 
49
+ ### 🧨 Diffusers
50
 
51
+ Make sure to upgrade diffusers to >= 0.19.0:
52
+ ```
53
+ pip install diffusers --upgrade
54
+ ```
55
+
56
+ In addition make sure to install `transformers`, `safetensors`, `accelerate` as well as the invisible watermark:
57
+ ```
58
+ pip install invisible_watermark transformers accelerate safetensors
59
+ ```
60
 
61
+ To just use the base model, you can run:
62
 
63
+ ```py
64
+ from diffusers import DiffusionPipeline
65
+ import torch
66
 
67
+ pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
68
+ pipe.to("cuda")
69
 
70
+ # if using torch < 2.0
71
+ # pipe.enable_xformers_memory_efficient_attention()
72
 
73
+ prompt = "An astronaut riding a green horse"
74
 
75
+ images = pipe(prompt=prompt).images[0]
76
+ ```
77
 
78
+ To use the whole base + refiner pipeline as an ensemble of experts you can run:
79
 
80
+ ```py
81
+ from diffusers import DiffusionPipeline
82
+ import torch
83
 
84
+ # load both base & refiner
85
+ base = DiffusionPipeline.from_pretrained(
86
+ "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16, variant="fp16", use_safetensors=True
87
+ )
88
+ base.to("cuda")
89
+ refiner = DiffusionPipeline.from_pretrained(
90
+ "stabilityai/stable-diffusion-xl-refiner-1.0",
91
+ text_encoder_2=base.text_encoder_2,
92
+ vae=base.vae,
93
+ torch_dtype=torch.float16,
94
+ use_safetensors=True,
95
+ variant="fp16",
96
+ )
97
+ refiner.to("cuda")
98
 
99
+ # Define how many steps and what % of steps to be run on each experts (80/20) here
100
+ n_steps = 40
101
+ high_noise_frac = 0.8
102
 
103
+ prompt = "A majestic lion jumping from a big stone at night"
104
 
105
+ # run both experts
106
+ image = base(
107
+ prompt=prompt,
108
+ num_inference_steps=n_steps,
109
+ denoising_end=high_noise_frac,
110
+ output_type="latent",
111
+ ).images
112
+ image = refiner(
113
+ prompt=prompt,
114
+ num_inference_steps=n_steps,
115
+ denoising_start=high_noise_frac,
116
+ image=image,
117
+ ).images[0]
118
+ ```
119
 
120
+ When using `torch >= 2.0`, you can improve the inference speed by 20-30% with torch.compile. Simple wrap the unet with torch compile before running the pipeline:
121
+ ```py
122
+ pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
123
+ ```
124
 
125
+ If you are limited by GPU VRAM, you can enable *cpu offloading* by calling `pipe.enable_model_cpu_offload`
126
+ instead of `.to("cuda")`:
127
 
128
+ ```diff
129
+ - pipe.to("cuda")
130
+ + pipe.enable_model_cpu_offload()
131
+ ```
132
 
133
+ For more information on how to use Stable Diffusion XL with `diffusers`, please have a look at [the Stable Diffusion XL Docs](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl).
134
 
135
+ ### Optimum
136
+ [Optimum](https://github.com/huggingface/optimum) provides a Stable Diffusion pipeline compatible with both [OpenVINO](https://docs.openvino.ai/latest/index.html) and [ONNX Runtime](https://onnxruntime.ai/).
137
 
138
+ #### OpenVINO
139
 
140
+ To install Optimum with the dependencies required for OpenVINO :
141
 
142
+ ```bash
143
+ pip install optimum[openvino]
144
+ ```
 
 
145
 
146
+ To load an OpenVINO model and run inference with OpenVINO Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `OVStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the OpenVINO format on-the-fly, you can set `export=True`.
147
 
148
+ ```diff
149
+ - from diffusers import StableDiffusionXLPipeline
150
+ + from optimum.intel import OVStableDiffusionXLPipeline
151
 
152
+ model_id = "stabilityai/stable-diffusion-xl-base-1.0"
153
+ - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id)
154
+ + pipeline = OVStableDiffusionXLPipeline.from_pretrained(model_id)
155
+ prompt = "A majestic lion jumping from a big stone at night"
156
+ image = pipeline(prompt).images[0]
157
+ ```
158
 
159
+ You can find more examples (such as static reshaping and model compilation) in optimum [documentation](https://huggingface.co/docs/optimum/main/en/intel/inference#stable-diffusion-xl).
160
 
 
161
 
162
+ #### ONNX
163
 
164
+ To install Optimum with the dependencies required for ONNX Runtime inference :
165
 
166
+ ```bash
167
+ pip install optimum[onnxruntime]
168
+ ```
169
 
170
+ To load an ONNX model and run inference with ONNX Runtime, you need to replace `StableDiffusionXLPipeline` with Optimum `ORTStableDiffusionXLPipeline`. In case you want to load a PyTorch model and convert it to the ONNX format on-the-fly, you can set `export=True`.
171
 
172
+ ```diff
173
+ - from diffusers import StableDiffusionXLPipeline
174
+ + from optimum.onnxruntime import ORTStableDiffusionXLPipeline
175
 
176
+ model_id = "stabilityai/stable-diffusion-xl-base-1.0"
177
+ - pipeline = StableDiffusionXLPipeline.from_pretrained(model_id)
178
+ + pipeline = ORTStableDiffusionXLPipeline.from_pretrained(model_id)
179
+ prompt = "A majestic lion jumping from a big stone at night"
180
+ image = pipeline(prompt).images[0]
181
+ ```
182
 
183
+ You can find more examples in optimum [documentation](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models#stable-diffusion-xl).
184
 
 
185
 
186
+ ## Uses
187
 
188
+ ### Direct Use
189
 
190
+ The model is intended for research purposes only. Possible research areas and tasks include
191
 
192
+ - Generation of artworks and use in design and other artistic processes.
193
+ - Applications in educational or creative tools.
194
+ - Research on generative models.
195
+ - Safe deployment of models which have the potential to generate harmful content.
196
+ - Probing and understanding the limitations and biases of generative models.
197
 
198
+ Excluded uses are described below.
199
 
200
+ ### Out-of-Scope Use
201
 
202
+ The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
203
 
204
+ ## Limitations and Bias
205
 
206
+ ### Limitations
207
 
208
+ - The model does not achieve perfect photorealism
209
+ - The model cannot render legible text
210
+ - The model struggles with more difficult tasks which involve compositionality, such as rendering an image corresponding to “A red cube on top of a blue sphere”
211
+ - Faces and people in general may not be generated properly.
212
+ - The autoencoding part of the model is lossy.
213
 
214
+ ### Bias
215
+ While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.