--- license: apache-2.0 base_model: google/bert_uncased_L-6_H-768_A-12 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_qat results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - name: Accuracy type: accuracy value: 0.9094036697247706 --- # bert_uncased_qat This model is a fine-tuned version of [google/bert_uncased_L-6_H-768_A-12](https://huggingface.co/google/bert_uncased_L-6_H-768_A-12) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.2984 - Accuracy: 0.9094 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2453 | 1.0 | 527 | 0.2552 | 0.8979 | | 0.1257 | 2.0 | 1054 | 0.2997 | 0.8933 | | 0.0818 | 3.0 | 1581 | 0.2984 | 0.9094 | | 0.057 | 4.0 | 2108 | 0.3181 | 0.9048 | | 0.0403 | 5.0 | 2635 | 0.3299 | 0.9083 | | 0.0274 | 6.0 | 3162 | 0.4222 | 0.9060 | | 0.0192 | 7.0 | 3689 | 0.4797 | 0.9083 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0