File size: 10,234 Bytes
f1a2ec8 13ab065 f1a2ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
JTP2 (Joint Tagger Project 2) Image Classification Script
This script implements a multi-label classifier for furry images using the
PILOT2 model. It processes images, generates tags, and saves the results. The
model is based on a Vision Transformer architecture and uses a custom GatedHead
for classification.
Key features:
- Image preprocessing and transformation
- Model inference using PILOT2
- Tag generation with customizable threshold
- Batch processing of image directories
- Saving results as text files alongside images
Usage:
python jtp2.py <directory> [--threshold <float>]
"""
import os
import json
import argparse
from PIL import Image
import safetensors.torch
import timm
from timm.models import VisionTransformer
import torch
from torchvision.transforms import transforms
from torchvision.transforms import InterpolationMode
import torchvision.transforms.functional as TF
import pillow_jxl
torch.set_grad_enabled(False)
class Fit(torch.nn.Module):
"""
A custom transform module for resizing and padding images.
Args:
bounds (tuple[int, int] | int): The target dimensions for the image.
interpolation (InterpolationMode): The interpolation method for resizing.
grow (bool): Whether to allow upscaling of images.
pad (float | None): The padding value to use if padding is applied.
"""
def __init__(
self,
bounds: tuple[int, int] | int,
interpolation=InterpolationMode.LANCZOS,
grow: bool = True,
pad: float | None = None
):
super().__init__()
self.bounds = (bounds, bounds) if isinstance(bounds, int) else bounds
self.interpolation = interpolation
self.grow = grow
self.pad = pad
def forward(self, img: Image) -> Image:
"""
Applies the Fit transform to the input image.
Args:
img (Image): The input PIL Image.
Returns:
Image: The transformed PIL Image.
"""
wimg, himg = img.size
hbound, wbound = self.bounds
hscale = hbound / himg
wscale = wbound / wimg
if not self.grow:
hscale = min(hscale, 1.0)
wscale = min(wscale, 1.0)
scale = min(hscale, wscale)
if scale == 1.0:
return img
hnew = min(round(himg * scale), hbound)
wnew = min(round(wimg * scale), wbound)
img = TF.resize(img, (hnew, wnew), self.interpolation)
if self.pad is None:
return img
hpad = hbound - hnew
wpad = wbound - wnew
tpad = hpad
bpad = hpad - tpad
lpad = wpad
rpad = wpad - lpad
return TF.pad(img, (lpad, tpad, rpad, bpad), self.pad)
def __repr__(self) -> str:
"""
Returns a string representation of the Fit module.
Returns:
str: A string describing the module's parameters.
"""
return (
f"{self.__class__.__name__}(bounds={self.bounds}, "
f"interpolation={self.interpolation.value}, grow={self.grow}, "
f"pad={self.pad})"
)
class CompositeAlpha(torch.nn.Module):
"""
A module for compositing images with alpha channels over a background color.
Args:
background (tuple[float, float, float] | float): The background color to
use for compositing.
"""
def __init__(self, background: tuple[float, float, float] | float):
super().__init__()
self.background = (
(background, background, background)
if isinstance(background, float)
else background
)
self.background = torch.tensor(self.background).unsqueeze(1).unsqueeze(2)
def forward(self, img: torch.Tensor) -> torch.Tensor:
"""
Applies alpha compositing to the input image tensor.
Args:
img (torch.Tensor): The input image tensor.
Returns:
torch.Tensor: The composited image tensor.
"""
if img.shape[-3] == 3:
return img
alpha = img[..., 3, None, :, :]
img[..., :3, :, :] *= alpha
background = self.background.expand(-1, img.shape[-2], img.shape[-1])
if background.ndim == 1:
background = background[:, None, None]
elif background.ndim == 2:
background = background[None, :, :]
img[..., :3, :, :] += (1.0 - alpha) * background
return img[..., :3, :, :]
def __repr__(self) -> str:
"""
Returns a string representation of the CompositeAlpha module.
Returns:
str: A string describing the module's parameters.
"""
return f"{self.__class__.__name__}(background={self.background})"
transform = transforms.Compose([
Fit((384, 384)),
transforms.ToTensor(),
CompositeAlpha(0.5),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
transforms.CenterCrop((384, 384)),
])
model = timm.create_model(
"vit_so400m_patch14_siglip_384.webli",
pretrained=False,
num_classes=9083
) # type: VisionTransformer
class GatedHead(torch.nn.Module):
"""
A custom head module with gating mechanism for the classifier.
Args:
num_features (int): The number of input features.
num_classes (int): The number of output classes.
"""
def __init__(self, num_features: int, num_classes: int):
super().__init__()
self.num_classes = num_classes
self.linear = torch.nn.Linear(num_features, num_classes * 2)
self.act = torch.nn.Sigmoid()
self.gate = torch.nn.Sigmoid()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Applies the gated head to the input tensor.
Args:
x (torch.Tensor): The input tensor.
Returns:
torch.Tensor: The output tensor after applying the gated head.
"""
x = self.linear(x)
x = self.act(x[:, :self.num_classes]) * self.gate(x[:, self.num_classes:])
return x
model.head = GatedHead(min(model.head.weight.shape), 9083)
safetensors.torch.load_model(
model, "/home/kade/source/repos/JTP2/JTP_PILOT2-e3-vit_so400m_patch14_siglip_384.safetensors"
)
if torch.cuda.is_available():
model.cuda()
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
model.to(dtype=torch.float16, memory_format=torch.channels_last)
model.eval()
with open("/home/kade/source/repos/JTP2/tags.json", "r", encoding="utf-8") as file:
tags = json.load(file) # type: dict
allowed_tags = list(tags.keys())
for idx, tag in enumerate(allowed_tags):
allowed_tags[idx] = tag.replace("_", " ")
sorted_tag_score = {}
def run_classifier(image, threshold):
"""
Runs the classifier on a single image and returns tags based on the threshold.
Args:
image (PIL.Image): The input image.
threshold (float): The probability threshold for including tags.
Returns:
tuple: A tuple containing the comma-separated tags and a dictionary of
tag probabilities.
"""
global sorted_tag_score
img = image.convert('RGBA')
tensor = transform(img).unsqueeze(0)
if torch.cuda.is_available():
tensor = tensor.cuda()
if torch.cuda.get_device_capability()[0] >= 7: # tensor cores
tensor = tensor.to(dtype=torch.float16, memory_format=torch.channels_last)
with torch.no_grad():
probits = model(tensor)[0].cpu()
values, indices = probits.topk(250)
tag_score = dict()
for i in range(indices.size(0)):
tag_score[allowed_tags[indices[i]]] = values[i].item()
sorted_tag_score = dict(
sorted(tag_score.items(), key=lambda item: item[1], reverse=True)
)
return create_tags(threshold)
def create_tags(threshold):
"""
Creates a list of tags based on the current sorted_tag_score and the given
threshold.
Args:
threshold (float): The probability threshold for including tags.
Returns:
tuple: A tuple containing the comma-separated tags and a dictionary of
filtered tag probabilities.
"""
global sorted_tag_score
filtered_tag_score = {
key: value for key, value in sorted_tag_score.items() if value > threshold
}
text_no_impl = ", ".join(filtered_tag_score.keys())
return text_no_impl, filtered_tag_score
def process_directory(directory, threshold):
"""
Processes all images in a directory and its subdirectories, generating tags
for each image.
Args:
directory (str): The path to the directory containing images.
threshold (float): The probability threshold for including tags.
Returns:
dict: A dictionary mapping image paths to their generated tags.
"""
results = {}
for root, _, files in os.walk(directory):
for file in files:
if file.lower().endswith(('.jpg', '.jpeg', '.png', '.jxl')):
image_path = os.path.join(root, file)
text_file_path = os.path.splitext(image_path)[0] + ".tags"
# Skip if a corresponding .txt file already exists
if os.path.exists(text_file_path):
continue
image = Image.open(image_path)
tags, _ = run_classifier(image, threshold)
results[image_path] = tags
# Save tags to a text file with the same name as the image, using UTF-8 encoding
with open(text_file_path, "w", encoding="utf-8") as text_file:
text_file.write(tags)
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run inference on a directory of images."
)
parser.add_argument("directory", type=str, help="Target directory containing images.")
parser.add_argument(
"--threshold", type=float, default=0.2, help="Threshold for tag filtering."
)
args = parser.parse_args()
results = process_directory(args.directory, args.threshold)
for image_path, tags in results.items():
print(f"{image_path}: {tags}")
|