File size: 6,958 Bytes
1d79986
 
 
571d741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
#!/usr/bin/env python
# -*- coding: utf-8 -*-

import argparse
import logging
import re
from collections import defaultdict
from pathlib import Path

from safetensors.numpy import safe_open, save_file

logger = logging.getLogger(__name__)


def analyze_lora_layers(
    sft_fd: safe_open,
) -> tuple[list[tuple[tuple[str, int], set[str]]], set[str]]:
    """
    Analyze the LoRA layers in a SafeTensors file.

    Args:
        sft_fd (safe_open): An open SafeTensors file.

    Returns:
        A tuple containing:
        - A list of tuples, each containing a (section, index) pair and a set of associated keys.
        - A set of pass-through keys (non-LoRA layers).
    """
    RE_LORA_NAME = re.compile(
        r"lora_unet_((?:input|middle|output|down|mid|up)_blocks?)(?:(?:_(\d+))?_attentions)?_(\d+)_.*"
    )

    pass_through_keys: set[str] = set()
    block2keys: dict[tuple[str, int], set[str]] = defaultdict(set)

    for k in sft_fd.keys():
        m = RE_LORA_NAME.fullmatch(k)
        if not m:
            pass_through_keys.add(k)
            continue
        section, idx1, idx2 = m.groups()
        if idx1 is None:
            idx = idx2
        else:
            idx = f"{idx1}{idx2}"

        block2keys[(section, idx)].add(k)

    if not block2keys:
        raise ValueError(
            "No UNet layers found in the LoRA checkpoint (Maybe not a SDXL model?)"
        )
    block2keys_sorted = sorted(block2keys.items())
    return block2keys_sorted, pass_through_keys


def print_block_layout(
    block2keys: list[tuple[tuple[str, int], set[str]]],
    weights: list[float] | None = None,
) -> None:
    """
    Print the layout of LoRA blocks, optionally with weights.

    Args:
        block2keys: A list of tuples, each containing a (section, index) pair and a set of associated keys.
        weights: Optional list of weights corresponding to each block.
    """
    logger.info("Blocks layout:")
    if weights is None:
        for i, ((section, idx), v) in enumerate(block2keys):
            logger.info(f"\t[{i:>2d}] {section:>13}.{idx} layers={len(v):<3}")
        section2shortname = {
            # SDXL names:
            "input_blocks": "INP",
            "middle_block": "MID",
            "output_blocks": "OUT",
            # SD1 names
            "down_blocks": "INP",
            "mid_block": "MID",
            "up_blocks": "OUT",
        }
        vector_string = ",".join(
            f"{section2shortname[section]}{idx:>02}" for (section, idx), _ in block2keys
        )
        logger.info(f'Vector string format: "1,{vector_string}"')
        vector_string = ",".join("0" * len(block2keys))
        logger.info(f'Example (drops all blocks): "1,{vector_string}"')
    else:
        for i, (((section, idx), v), weight) in enumerate(zip(block2keys, weights)):
            if abs(weight) > 1e-6:
                if abs(weight - 1) < 1e-6:
                    weight = 1
                logger.info(
                    f"\t[{i:>2d}] {section:>13}.{idx} layers={len(v):<3} weight={weight}"
                )
            else:
                logger.info(
                    f"\t[{i:>2d}] {section:>13}.{idx} layers={len(v):<3} (removed)"
                )


def filter_blocks(sft_fd: safe_open, vector_string: str) -> dict[str, "numpy.ndarray"]:
    """
    Filter LoRA blocks based on a vector string.

    Args:
        sft_fd (safe_open): An open SafeTensors file.
        vector_string (str): A string representing weights for each block.

    Returns:
        A dictionary containing the filtered state dict, or None if an error occurs.
    """
    global_weight, *weights_vector = map(float, vector_string.split(","))

    block2keys, pass_through_keys = analyze_lora_layers(sft_fd)
    if len(weights_vector) != len(block2keys):
        logger.error(f"expected {len(block2keys)} weights, got {len(weights_vector)}")
        print_block_layout(block2keys)
        return None

    if logger.getEffectiveLevel() >= logging.INFO:
        print_block_layout(block2keys, weights_vector)

    state_dict = {}
    for weight, (_, keys) in zip(weights_vector, block2keys):
        weight *= global_weight
        if abs(weight) < 1e-6:
            continue
        for k in keys:
            tensor = sft_fd.get_tensor(k)
            if abs(weight - 1.0) > 1e-6:
                tensor *= weight
            state_dict[k] = tensor

    logger.info(
        "Keeping %d keys from the UNet, %d passing through (text encoders)",
        len(state_dict),
        len(pass_through_keys),
    )
    for k in pass_through_keys:
        state_dict[k] = sft_fd.get_tensor(k)

    return state_dict


def setup_logging(verbosity: int) -> None:
    """
    Set up logging based on verbosity level and quiet flag.

    Args:
        verbosity (int): The verbosity level (0-2).
        quiet (bool): If True, suppress all output except errors.
    """
    log_levels = [logging.WARNING, logging.INFO, logging.DEBUG]
    log_level = log_levels[max(0, min(verbosity, 2))]
    logging.basicConfig(level=log_level, format="%(levelname)s: %(message)s")


def main() -> None:
    """
    Main function to handle CLI arguments and execute the appropriate actions.
    """
    parser = argparse.ArgumentParser(
        description="Analyze and filter LoRA layers in SafeTensors files."
    )
    parser.add_argument("input_file", type=Path, help="Input SafeTensors file")
    parser.add_argument(
        "vector_string", nargs="?", help="Vector string for filtering blocks"
    )
    parser.add_argument("-o", "--output", type=Path, help="Output file path")
    parser.add_argument(
        "-v",
        "--verbose",
        action="count",
        default=1,
        help="Increase verbosity (can be repeated)",
    )
    parser.add_argument(
        "-q",
        "--quiet",
        action="count",
        default=0,
        help="Suppress all output except errors",
    )
    args = parser.parse_args()
    setup_logging(args.verbose - args.quiet)

    with safe_open(args.input_file, framework="np") as sft_fd:
        if args.vector_string:
            # Filter blocks and save the result
            filtered_state_dict = filter_blocks(sft_fd, args.vector_string)
            if filtered_state_dict is None:
                exit(1)

            # Determine output path
            output_path = args.output or args.input_file.with_stem(
                f"{args.input_file.stem}-chop"
            )

            metadata = sft_fd.metadata()
            metadata["block_vector_string"] = args.vector_string
            save_file(filtered_state_dict, output_path, metadata=metadata)
            logging.info(f"Filtered LoRA saved to {output_path}")
        else:
            # Analyze LoRA layers
            block2keys, pass_through_keys = analyze_lora_layers(sft_fd)
            print_block_layout(block2keys)
            logging.info(f"Pass through layers: {len(pass_through_keys)}")


if __name__ == "__main__":
    main()