File size: 11,856 Bytes
1442347 3821594 1442347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
"Python only utils (no dependencies)"
import gzip
import json
import logging
import math
import warnings
from pathlib import Path
from typing import Callable, Iterable
logger = logging.getLogger(__name__)
tag_categories = [
"general",
"artist",
None, # Invalid catid
"copyright",
"character",
"species",
"invalid",
"meta",
"lore",
"pool",
]
tag_category2id = {v: k for k, v in enumerate(tag_categories) if v}
tag_categories_colors = [
"#b4c7d9",
"#f2ac08",
None, # Invalid catid
"#d0d",
"#0a0",
"#ed5d1f",
"#ff3d3d",
"#fff",
"#282",
"wheat",
]
tag_categories_alt_colors = [
"#2e76b4",
"#fbd67f",
None, # Invalid catid
"#ff5eff",
"#2bff2b",
"#f6b295",
"#ffbdbd",
"#666",
"#5fdb5f",
"#d0b27a",
]
def load_tags(data_dir):
"""
Load tag data, returns a tuple `(tag2idx, idx2tag, tag_categories)`
* `tag2idx`: dict mapping tag and aliases to numerical ids
* `idx2tag`: list mapping numerical id to tag string
* `tag_categories`: byte string mapping numerical id to categories
"""
data_dir = Path(data_dir)
with gzip.open(data_dir / "tags.txt.gz", "rt", encoding="utf-8") as fd:
idx2tag = fd.read().split("\n")
if not idx2tag[-1]:
idx2tag = idx2tag[:-1]
with gzip.open(data_dir / "tag2idx.json.gz", "rb") as fp:
tag2idx = json.load(fp)
with gzip.open(data_dir / "tags_categories.bin.gz", "rb") as fp:
tag_categories = fp.read()
logging.info(f"Loaded {len(idx2tag)} tags, {len(tag2idx)} tag2id mappings")
return tag2idx, idx2tag, tag_categories
def load_implications(data_dir):
"""
Load implication mappings. Returns a tuple `(implications, implications_rej)`
* `implications`: dict mapping numerical ids to a list of implied numerical
ids. Contains transitive implications.
* `implications_rej`: dict mapping tag strings to a list of implied
numerical ids. keys in implications_rej are tags that have a very little
usage (less than 2 posts) and don't have numerical ids associated with
them.
"""
with gzip.open(data_dir / "implications.json.gz", "rb") as fp:
implications = json.load(fp)
implications = {int(k): v for k, v in implications.items()}
with gzip.open(data_dir / "implications_rej.json.gz", "rb") as fp:
implications_rej = json.load(fp)
logger.info(
f"Loaded {len(implications)} implications + {len(implications_rej)} implication from tags without id"
)
return implications, implications_rej
def tag_rank_to_freq(rank: int) -> float:
"""Approximate the frequency of a tag given its rank"""
return math.exp(26.4284 * math.tanh(2.93505 * max(1, rank) ** (-0.136501)) - 11.492)
def tag_freq_to_rank(freq: int) -> float:
"""Approximate the rank of a tag given its frequency"""
log_freq = math.log(freq)
return math.exp(
-7.57186
* (0.0465456 * log_freq - 1.24326)
* math.log(1.13045 - 0.0720383 * log_freq)
+ 12.1903
)
InMapFun = Callable[[str, int | None], list[str]]
OutMapFun = Callable[[str], list[str]]
class TagNormalizer:
"""
Map tag strings to numerical ids, and vice versa.
Multiple strings can be mapped to a single id, while each id maps to a
single string. As a result, the encode/decode process can be used to
normalize tags to canonical spelling.
See `add_input_mappings` for adding aliases, and `rename_output` for setting
the canonical spelling of a tag.
"""
def __init__(self, path_or_data: str | Path | tuple[dict, list, bytes]):
if isinstance(path_or_data, (Path, str)):
data = load_tags(path_or_data)
else:
data = path_or_data
self.tag2idx, self.idx2tag, self.tag_categories = data
def get_category(self, tag: int | str, as_string=True) -> int:
if isinstance(tag, str):
tag = self.encode(tag)
cat = self.tag_categories[tag]
if as_string:
return tag_categories[cat]
return cat
def encode(self, tag: str, default=None):
"Convert tag string to numerical id"
return self.tag2idx.get(tag, default)
def decode(self, tag: int | str):
"Convert numerical id to tag string"
if isinstance(tag, str):
return tag
return self.idx2tag[tag]
def get_reverse_mapping(self):
"""Return a list mapping id -> [ tag strings ]"""
res = [[] for i in range(len(self.idx2tag))]
for tag, tid in self.tag2idx.items():
res[tid].append(tag)
return res
def add_input_mappings(
self, tags: str | Iterable[str], to_tid: int | str, on_conflict="raise"
):
"""Associate tag strings to an id for recognition by `encode`
`on_conflict` defines what to do when the tag string is already mapped
to a different id:
* "raise": raise an ValueError (default)
* "warn": raise a warning
* "overwrite_rarest": make the tag point to the most frequently used tid
* "overwrite": silently overwrite the mapping
* "silent", or any other string: don't set the mapping
"""
tag2idx = self.tag2idx
if not isinstance(to_tid, int):
to_tid = tag2idx[to_tid]
if isinstance(tags, str):
tags = (tags,)
for tag in tags:
conflict = tag2idx.get(tag, to_tid)
if conflict != to_tid:
msg = f"mapping {tag!r}->{self.idx2tag[to_tid]!r}({to_tid}) conflicts with previous mapping {tag!r}->{self.idx2tag[conflict]!r}({conflict})."
if on_conflict == "raise":
raise ValueError(msg)
elif on_conflict == "warn":
logger.warning(msg)
elif on_conflict == "overwrite_rarest" and to_tid > conflict:
continue
elif on_conflict != "overwrite":
continue
tag2idx[tag] = to_tid
def remove_input_mappings(self, tags: str | Iterable[str]):
"""Remove tag strings from the mapping"""
if isinstance(tags, str):
tags = (tags,)
for tag in tags:
if tag in self.tag2idx:
del self.tag2idx[tag]
else:
logger.warning(f"tag {tag!r} is not a valid tag")
def rename_output(self, orig: int | str, dest: str):
"""Change the tag string associated with an id. Used by `decode`."""
if not isinstance(orig, int):
orig = self.tag2idx[orig]
self.idx2tag[orig] = dest
def map_inputs(
self, mapfun: InMapFun, prepopulate=True, on_conflict="raise"
) -> "TagNormalizer":
tag2idx = self.tag2idx.copy() if prepopulate else {}
res = type(self)((tag2idx, self.idx2tag, self.tag_categories))
for tag, tid in self.tag2idx.items():
res.add_input_mappings(mapfun(tag, tid), tid, on_conflict=on_conflict)
return res
def map_outputs(self, mapfun: OutMapFun) -> "TagNormalizer":
idx2tag = [mapfun(t, i) for i, t in enumerate(self.idx2tag)]
return type(self)((self.tag2idx, idx2tag, self.tag_categories))
def get(self, key: int | str, default=None):
"""
Returns the string tag associated with a numerical id, or conversely,
the id associated with a tag.
"""
if isinstance(key, int):
idx2tag = self.idx2tag
if key >= len(idx2tag):
return default
return idx2tag[key]
return self.tag2idx.get(key, default)
class TagSetNormalizer:
def __init__(self, path_or_data: str | Path | tuple[TagNormalizer, dict, dict]):
if isinstance(path_or_data, (Path, str)):
data = TagNormalizer(path_or_data), *load_implications(path_or_data)
else:
data = path_or_data
self.tag_normalizer, self.implications, self.implications_rej = data
def map_inputs(self, mapfun: InMapFun, on_conflict="raise") -> "TagSetNormalizer":
tag_normalizer = self.tag_normalizer.map_inputs(mapfun, on_conflict=on_conflict)
implications_rej: dict[str, list[str]] = {}
for tag_string, implied_ids in self.implications_rej.items():
for new_tag_string in mapfun(tag_string, None):
conflict = implications_rej.get(new_tag_string, implied_ids)
if conflict != implied_ids:
msg = f"mapping {tag_string!r}->{implied_ids} conflicts with previous mapping {tag_string!r}->{conflict}."
if on_conflict == "raise":
raise ValueError(msg)
elif on_conflict == "warn":
warnings.warn(msg)
elif on_conflict != "overwrite":
continue
implications_rej[new_tag_string] = implied_ids
res = type(self)((tag_normalizer, self.implications, implications_rej))
return res
def map_outputs(self, mapfun: OutMapFun) -> "TagSetNormalizer":
tag_normalizer = self.tag_normalizer.map_outputs(mapfun)
return type(self)((tag_normalizer, self.implications, self.implications_rej))
def get_implied(self, tag: int | str) -> list[int]:
if isinstance(tag, int):
return self.implications.get(tag, ())
else:
return self.implications_rej.get(tag, ())
def encode(
self,
tags: list[str],
keep_implied: bool | set[int] = False,
max_antecedent_rank: int | None = None,
drop_antecedent_rank: int | None = None,
) -> tuple[list[int | str], set[int]]:
"""
Encode a list of string as numerical ids and strip implied tags.
Unknown tags are returned as strings.
Returns :
* a list of tag ids and unknown tag strings,
* a list of implied tag ids.
"""
tag2idx = self.tag_normalizer.tag2idx
N = len(tag2idx)
max_antecedent_rank = max_antecedent_rank or N + 1
drop_antecedent_rank = drop_antecedent_rank or N + 1
get_implied = self.implications.get
get_implied_rej = self.implications_rej.get
stack = [tag2idx.get(tag, tag) for tag in tags[::-1]]
implied = set()
res = dict() # dict as a cheap ordered set
while stack:
tag = stack.pop()
if isinstance(tag, int):
antecedent_rank = tag
consequents = get_implied(tag)
else:
# the tag might be a very rare antecedent (less than two posts)
# that doesn't have a tag id
antecedent_rank = N
consequents = get_implied_rej(tag)
if consequents:
if antecedent_rank < max_antecedent_rank:
implied.update(consequents)
else:
# The implied tags from low frequency antecedent (high rank)
# are added to the list and instead the antecedent may be
# dropped
stack.extend(consequents)
if antecedent_rank >= drop_antecedent_rank:
continue
res[tag] = None
res = res.keys()
if not keep_implied:
res = [t for t in res if t not in implied]
elif isinstance(keep_implied, set):
res = [t for t in res if t not in implied or t in keep_implied]
else:
res = list(res)
return res, implied
def decode(self, tags: Iterable[int | str]) -> list[str]:
idx2tag = self.tag_normalizer.idx2tag
return [idx2tag[t] if isinstance(t, int) else t for t in tags]
|