File size: 38,211 Bytes
f1a2ec8 913d039 f1a2ec8 0f0ad40 ee41534 f1a2ec8 56166a4 f1a2ec8 2e83eb5 913d039 f1a2ec8 dc933c5 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 913d039 3461363 f1a2ec8 2e83eb5 f1a2ec8 56166a4 f1a2ec8 2e83eb5 f1a2ec8 56166a4 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 56166a4 2e83eb5 56166a4 f1a2ec8 2e83eb5 f1a2ec8 ab50172 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 913d039 ee41534 2e83eb5 f1a2ec8 56166a4 f1a2ec8 3461363 56166a4 f1a2ec8 913d039 f1a2ec8 913d039 2e83eb5 ab50172 2e83eb5 f1a2ec8 913d039 56166a4 3f4436c 56166a4 f1a2ec8 913d039 f1a2ec8 913d039 f1a2ec8 ab50172 f1a2ec8 2e83eb5 f1a2ec8 913d039 f1a2ec8 2e83eb5 f1a2ec8 ab50172 f1a2ec8 2e83eb5 913d039 b54f417 f1a2ec8 b54f417 ee41534 b54f417 f1a2ec8 2e83eb5 3461363 2e83eb5 f1a2ec8 ee41534 f1a2ec8 ee41534 b54f417 f1a2ec8 56166a4 913d039 ee41534 ab50172 56166a4 ee41534 913d039 b54f417 ee41534 b54f417 ee41534 b54f417 56166a4 913d039 ab50172 913d039 ab50172 913d039 ab50172 913d039 ab50172 913d039 ab50172 ee41534 913d039 ab50172 ee41534 913d039 ab50172 ee41534 56166a4 913d039 f1a2ec8 3461363 f1a2ec8 913d039 3461363 f1a2ec8 3461363 913d039 f1a2ec8 913d039 3461363 f1a2ec8 3461363 f1a2ec8 3461363 f1a2ec8 3461363 2e83eb5 3461363 f1a2ec8 3461363 2e83eb5 913d039 3461363 2e83eb5 3461363 2e83eb5 3461363 f1a2ec8 3461363 2e83eb5 3461363 2e83eb5 3461363 f1a2ec8 2e83eb5 3461363 ab50172 3461363 2e83eb5 3461363 f1a2ec8 3461363 f1a2ec8 3f4436c f1a2ec8 2e83eb5 f300b48 f1a2ec8 ab50172 f1a2ec8 ab50172 f1a2ec8 ab50172 f1a2ec8 ee41534 f1a2ec8 913d039 0f6b578 913d039 0f6b578 913d039 0f6b578 913d039 f1a2ec8 56166a4 f1a2ec8 56166a4 f1a2ec8 2e83eb5 f1a2ec8 913d039 2e83eb5 f1a2ec8 ab50172 f1a2ec8 ab50172 f1a2ec8 ab50172 f1a2ec8 2e83eb5 f1a2ec8 2e83eb5 e77eb40 2e83eb5 e77eb40 56166a4 4695d3c 56166a4 f1a2ec8 6f8fd26 0f0ad40 2e83eb5 0f0ad40 56166a4 0f0ad40 913d039 f1a2ec8 913d039 f1a2ec8 a27421b f1a2ec8 2e83eb5 f1a2ec8 a27421b f1a2ec8 a27421b fc8f518 a27421b 0f0ad40 ab50172 0f0ad40 4505cc5 fc8f518 4505cc5 913d039 f1a2ec8 913d039 f1a2ec8 a27421b f1a2ec8 a27421b 3821594 a27421b 3821594 a27421b 3821594 a27421b 3821594 a27421b f1a2ec8 fc8f518 f1a2ec8 a27421b f1a2ec8 a27421b f1a2ec8 a27421b b7d52fe 0f6b578 f1a2ec8 a27421b f1a2ec8 3821594 2e83eb5 3821594 56166a4 3821594 56166a4 3821594 2e83eb5 3821594 2e83eb5 3461363 913d039 3461363 2e83eb5 56166a4 2e83eb5 913d039 3821594 913d039 3821594 2e83eb5 3821594 913d039 3821594 913d039 2e83eb5 ab50172 2e83eb5 913d039 3821594 2e83eb5 3821594 913d039 56166a4 3821594 913d039 3821594 913d039 3821594 913d039 ab50172 3821594 913d039 2e83eb5 913d039 2e83eb5 56166a4 913d039 3821594 2e83eb5 913d039 2e83eb5 3821594 913d039 3821594 2e83eb5 56166a4 2e83eb5 3821594 2e83eb5 3821594 913d039 3821594 ab50172 2e83eb5 3821594 2e83eb5 56166a4 3821594 d3c5f55 3821594 2e83eb5 56166a4 3821594 56166a4 ab50172 56166a4 d3c5f55 3821594 2e83eb5 913d039 2e83eb5 3821594 2e83eb5 56166a4 3821594 2e83eb5 d3c5f55 3821594 2e83eb5 913d039 d3c5f55 3461363 913d039 3461363 913d039 d3c5f55 3f4436c 913d039 3821594 2e83eb5 f1a2ec8 4695d3c f1a2ec8 4695d3c f1a2ec8 2e83eb5 f1a2ec8 13ab065 f1a2ec8 2e83eb5 6f8fd26 f1a2ec8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
JoyCaption Alpha Two
This module provides functionality for generating captions for images using a
combination of CLIP, LLM, and custom image adapters. It supports various
caption types, tones, and lengths.
The main components include:
- Loading and initializing models (CLIP, LLM, image adapter)
- Processing images and generating captions
- Command-line interface for batch processing images in a directory
"""
import os
import argparse
import re
import random
import math
from pathlib import Path
from typing import List, Tuple, Dict
from PIL import Image
import pillow_jxl
import torch
import torchvision.transforms.functional as TVF
from transformers import (
AutoModel,
AutoTokenizer,
AutoModelForCausalLM,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
)
from torch import nn
from e6db_reader import TagSetNormalizer, tag_category2id, tag_rank_to_freq
import logging
CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path(__file__).resolve().parent / "cgrkzexw-599808"
CAPTION_TYPE_MAP = {
"descriptive": [
"Write a descriptive caption for this image in a formal tone.",
"Write a descriptive caption for this image in a formal tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a formal tone.",
],
"descriptive (informal)": [
"Write a descriptive caption for this image in a casual tone.",
"Write a descriptive caption for this image in a casual tone within {word_count} words.",
"Write a {length} descriptive caption for this image in a casual tone.",
],
"training prompt": [
"Write a stable diffusion prompt for this image.",
"Write a stable diffusion prompt for this image within {word_count} words.",
"Write a {length} stable diffusion prompt for this image.",
],
"midjourney": [
"Write a MidJourney prompt for this image.",
"Write a MidJourney prompt for this image within {word_count} words.",
"Write a {length} MidJourney prompt for this image.",
],
"booru tag list": [
"Write a list of Booru tags for this image.",
"Write a list of Booru tags for this image within {word_count} words.",
"Write a {length} list of Booru tags for this image.",
],
"booru-like tag list": [
"Write a list of Booru-like tags for this image.",
"Write a list of Booru-like tags for this image within {word_count} words.",
"Write a {length} list of Booru-like tags for this image.",
],
"art critic": [
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it within {word_count} words.",
"Analyze this image like an art critic would with information about its composition, style, symbolism, the use of color, light, any artistic movement it might belong to, etc. Keep it {length}.",
],
"product listing": [
"Write a caption for this image as though it were a product listing.",
"Write a caption for this image as though it were a product listing. Keep it under {word_count} words.",
"Write a {length} caption for this image as though it were a product listing.",
],
"social media post": [
"Write a caption for this image as if it were being used for a social media post.",
"Write a caption for this image as if it were being used for a social media post. Limit the caption to {word_count} words.",
"Write a {length} caption for this image as if it were being used for a social media post.",
],
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
"""
Custom image adapter module for processing CLIP vision outputs.
This module adapts the output of a CLIP vision model to be compatible with
a text model. It supports optional layer normalization, positional
embeddings, and deep feature extraction.
Args:
input_features (int):
Number of input features from the vision model.
output_features (int):
Number of output features to match the text model.
ln1 (bool):
Whether to use layer normalization.
pos_emb (bool):
Whether to use positional embeddings.
num_image_tokens (int):
Number of image tokens.
deep_extract (bool):
Whether to use deep feature extraction.
"""
def __init__(
self,
input_features: int,
output_features: int,
ln1: bool,
pos_emb: bool,
num_image_tokens: int,
deep_extract: bool,
):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = (
None
if not pos_emb
else nn.Parameter(torch.zeros(num_image_tokens, input_features))
)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)
def forward(self, vision_outputs: torch.Tensor):
"""
Forward pass of the image adapter.
Args:
vision_outputs (torch.Tensor):
Output tensor from the CLIP vision model.
Returns:
torch.Tensor: Adapted image features.
"""
if self.deep_extract:
x = torch.concat(
(
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
),
dim=-1,
)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"
expected_shape = vision_outputs[-2].shape[-1] * 5
assert (
x.shape[-1] == expected_shape
), f"Expected {expected_shape}, got {x.shape[-1]}"
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert (
x.shape[-2:] == self.pos_emb.shape
), f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
other_tokens = self.other_tokens(
torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(
x.shape[0], -1
)
)
assert other_tokens.shape == (
x.shape[0],
2,
x.shape[2],
), f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
"""
Get the end-of-text embedding.
Returns:
torch.Tensor: The end-of-text embedding.
"""
return self.other_tokens(
torch.tensor([2], device=self.other_tokens.weight.device)
).squeeze(0)
STOP_WORDS: set[str] = set(
"i'll if we'd can't you'd shouldn't i'd only doesn't further isn't didn't has more aren't during do than were he's too here you against could few for ought won't we until weren't i've they're same up she but are how here's their over can under mustn't while on by had and an each he'd he about she'd am was she'll where's did out or that's it they'd a let's shall what's the to don't when below no any some from is hadn't all they i'm must in before who's own where you've that very them this not because it's shan't wasn't you'll when's most off i at other hasn't nor been such again we'll down above will so should into she's once have these why's be we've as being why those then with after may you're would haven't both wouldn't there cannot they've couldn't how's between does we're through he'll of there's they'll might".split(
" "
)
)
class JoyCaptionModel:
"""
A class for generating captions for images using CLIP, LLM,
and custom image adapters.
This class encapsulates the functionality to load and initialize
various models (CLIP, LLM, image adapter) and use them to process
images and generate captions.
It supports different caption types, tones, and lengths.
Attributes:
clip_model: The CLIP vision model for processing images.
text_model: The language model for generating captions.
image_adapter: Custom adapter for processing CLIP vision outputs.
tokenizer: Tokenizer for the language model.
Methods:
load_models(): Load and initialize all required models.
process_image(input_image, caption_type, caption_length):
Process an input image and generate a caption
based on specified parameters.
"""
def __init__(self):
self.clip_model = None
self.text_model = None
self.image_adapter = None
self.tokenizer = None
def load_models(self):
"""
Load and initialize all required models (CLIP, LLM, image adapter).
"""
logging.info("Loading CLIP")
self.clip_model = AutoModel.from_pretrained(CLIP_PATH)
self.clip_model = self.clip_model.vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
logging.info("Loading VLM's custom vision model")
checkpoint = torch.load(
CHECKPOINT_PATH / "clip_model.pt", map_location="cpu"
)
checkpoint = {
k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()
}
self.clip_model.load_state_dict(checkpoint)
del checkpoint
self.clip_model.eval()
self.clip_model.requires_grad_(False)
self.clip_model.to("cuda")
logging.info("Loading tokenizer")
self.tokenizer = AutoTokenizer.from_pretrained(
CHECKPOINT_PATH / "text_model", use_fast=True
)
assert isinstance(
self.tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)
)
logging.info("Loading LLM")
if (CHECKPOINT_PATH / "text_model").exists():
logging.info("Loading VLM's custom text model")
self.text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model", device_map=0, torch_dtype=torch.bfloat16
)
else:
self.text_model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH, device_map="auto", torch_dtype=torch.bfloat16
)
self.text_model.eval()
logging.info("Loading image adapter")
self.image_adapter = ImageAdapter(
self.clip_model.config.hidden_size,
self.text_model.config.hidden_size,
False,
False,
38,
False,
)
self.image_adapter.load_state_dict(
torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")
)
self.image_adapter.eval()
self.image_adapter.to("cuda")
@torch.no_grad()
def process_image(
self,
input_image: Image.Image,
prompt_str: str,
) -> Tuple[str, float]:
"""
Process an input image and generate a caption based on specified parameters.
Also calculates the entropy of the generated caption.
Returns:
Tuple[str, float]: The generated caption and its entropy.
"""
torch.cuda.empty_cache()
pixel_values = self._preprocess_image(input_image)
embedded_images = self._embed_image(pixel_values)
inputs_embeds, input_ids, attention_mask = self._construct_inputs(
embedded_images, prompt_str
)
generate_ids = self._generate_caption(inputs_embeds, input_ids, attention_mask)
caption = self._decode_caption(generate_ids, input_ids)
# Calculate entropy
token_ids = generate_ids[0].tolist()
entropy = self._calculate_entropy(token_ids)
return caption.strip(), entropy
def generate_valid_caption(
self,
input_image: Image.Image,
prompt: str,
*,
limited_words: Dict[str, int] = {"fluffy": 2},
min_sentence_count: int = 3,
max_word_repetitions: int = 5,
min_entropy: float = 1.75,
stop_words: set[str] = STOP_WORDS,
) -> str:
"""
Generate a valid caption, retrying if certain conditions are not met.
Args:
input_image (Image.Image): The input image to caption.
prompt (str | None): Prompt for caption generation.
limited_words (Dict[str, int]): Dictionary of words with their maximum allowed occurrences. Default is {"fluffy": 1}.
min_sentence_count (int): Minimum required number of sentences. Default is 3.
max_word_repetitions (int): Maximum allowed repetitions for words longer than 4 characters. Default is 15.
min_entropy (float): Minimum required entropy of the caption. Default is 2.3.
Returns:
str: A valid caption meeting all specified criteria.
The method retries caption generation if:
- The caption contains only special characters
- The caption does not end with a period, exclamation mark, or question mark
- Any word in limited_words appears more than its specified maximum times
- Any word longer than 4 characters is repeated more than max_word_repetitions times
- The caption contains fewer than min_sentence_count sentences
- The entropy of the caption is below min_entropy
"""
while True:
caption, entropy = self.process_image(input_image, prompt)
words = re.findall(r"\b\w+\b", caption.lower())
word_counts = {
word: words.count(word) for word in set(words) if word not in stop_words
}
sentence_count = len(re.findall(r"[.!?]", caption))
if not re.search(r"\w", caption):
logging.info(
f"Retrying: Caption contains only special characters.\nCaption: {caption!r}"
)
elif caption[-1] not in {".", "!", "?"}:
logging.info(
f"Retrying: Caption does not end with proper punctuation.\nCaption: {caption!r}"
)
elif any(
caption.lower().count(word) > max_count
for word, max_count in limited_words.items()
):
exceeded_words = [
f"{word} ({caption.lower().count(word)}/{max_count})"
for word, max_count in limited_words.items()
if caption.lower().count(word) > max_count
]
logging.info(
f"Retrying: Limited words exceeded: {', '.join(exceeded_words)}.\nCaption: {caption!r}"
)
elif any(
count > max_word_repetitions
for word, count in word_counts.items()
if len(word) > 4
):
repeated_words = [
word
for word, count in word_counts.items()
if count > max_word_repetitions and len(word) > 4
]
logging.info(
f"Retrying: Words repeated more than {max_word_repetitions} times: {', '.join(repeated_words)}.\nCaption: {caption!r}"
)
elif sentence_count < min_sentence_count:
logging.info(
f"Retrying: Only {sentence_count} sentences (min: {min_sentence_count}).\nCaption: {caption!r}"
)
elif entropy < min_entropy:
logging.info(
f"Retrying: Low entropy ({entropy:.2f} < {min_entropy}).\nCaption: {caption!r}"
)
else:
return caption
@staticmethod
def get_prompt_string(caption_type, caption_length):
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
# Build prompt
if length is None:
map_idx = 0
elif isinstance(length, int):
map_idx = 1
elif isinstance(length, str):
map_idx = 2
else:
raise ValueError(f"Invalid caption length: {length}")
caption_type = caption_type.lower()
if caption_type not in CAPTION_TYPE_MAP:
raise ValueError(f"Invalid caption type: {caption_type}")
prompt_str = CAPTION_TYPE_MAP[caption_type][map_idx]
prompt_str = prompt_str.format(length=caption_length, word_count=caption_length)
return prompt_str
@staticmethod
def _preprocess_image(input_image: Image.Image) -> torch.Tensor:
"""
Preprocess the input image for the CLIP model.
Args:
input_image (Image.Image): The input PIL image.
Returns:
torch.Tensor: Preprocessed image tensor.
"""
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
return pixel_values.to("cuda")
def _embed_image(self, pixel_values: torch.Tensor) -> torch.Tensor:
"""
Embed the preprocessed image using CLIP and the image adapter.
Args:
pixel_values (torch.Tensor): Preprocessed image tensor.
Returns:
torch.Tensor: Embedded image tensor.
"""
with torch.amp.autocast_mode.autocast("cuda", enabled=True):
vision_outputs = self.clip_model(
pixel_values=pixel_values, output_hidden_states=True
)
embedded_images = self.image_adapter(vision_outputs.hidden_states)
return embedded_images.to("cuda")
def _construct_inputs(
self, embedded_images: torch.Tensor, prompt_str: str
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Construct the inputs for the text model's generate method.
Args:
embedded_images (torch.Tensor): Embedded image tensor.
prompt_str (str): The prompt string for captioning.
Returns:
tuple: (input_embeds, input_ids, attention_mask)
"""
# Build the conversation
convo = [
{"role": "system", "content": "You are a helpful image captioner."},
{"role": "user", "content": prompt_str},
]
# Format and tokenize the conversation
convo_string = self.tokenizer.apply_chat_template(
convo, tokenize=False, add_generation_prompt=True
)
logging.debug(f"Convo:\n{convo_string}")
convo_tokens = self.tokenizer.encode(
convo_string,
return_tensors="pt",
add_special_tokens=False,
truncation=False,
)
prompt_tokens = self.tokenizer.encode(
prompt_str, return_tensors="pt", add_special_tokens=False, truncation=False
)
convo_tokens = convo_tokens.squeeze(0)
prompt_tokens = prompt_tokens.squeeze(0)
# Calculate where to inject the image
eot_id_indices = (
(convo_tokens == self.tokenizer.convert_tokens_to_ids("<|eot_id|>"))
.nonzero(as_tuple=True)[0]
.tolist()
)
preamble_len = eot_id_indices[1] - prompt_tokens.shape[0]
# Embed the tokens
convo_embeds = self.text_model.model.embed_tokens(
convo_tokens.unsqueeze(0).to("cuda")
)
# Construct the input
input_embeds = torch.cat(
[
convo_embeds[:, :preamble_len],
embedded_images.to(dtype=convo_embeds.dtype),
convo_embeds[:, preamble_len:],
],
dim=1,
).to("cuda")
input_ids = torch.cat(
[
convo_tokens[:preamble_len].unsqueeze(0),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
convo_tokens[preamble_len:].unsqueeze(0),
],
dim=1,
).to("cuda")
attention_mask = torch.ones_like(input_ids)
return input_embeds, input_ids, attention_mask
def _generate_caption(self, inputs_embeds, input_ids, attention_mask):
generate_ids = self.text_model.generate(
input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
# max_length=4096,
do_sample=True,
suppress_tokens=None,
repetition_penalty=1.2,
)
return generate_ids
def _decode_caption(self, generate_ids, input_ids):
generate_ids = generate_ids[:, input_ids.shape[1] :]
if generate_ids[0][-1] == self.tokenizer.eos_token_id or generate_ids[0][
-1
] == self.tokenizer.convert_tokens_to_ids("<|eot_id|>"):
generate_ids = generate_ids[:, :-1]
caption = self.tokenizer.batch_decode(
generate_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)[0]
return caption
def _calculate_entropy(self, token_ids: List[int]) -> float:
"""
Calculate the entropy of a sequence of token IDs.
Args:
token_ids (List[int]): List of token IDs.
Returns:
float: Entropy of the token sequence.
"""
token_counts = {}
total_tokens = len(token_ids)
for token_id in token_ids:
token_counts[token_id] = token_counts.get(token_id, 0) + 1
entropy = 0
for count in token_counts.values():
probability = count / total_tokens
entropy -= probability * math.log2(probability)
return entropy
class ColoredFormatter(logging.Formatter):
COLOR_GREEN = "\033[32m"
COLORS = {
"DEBUG": "\033[36m", # Cyan
# "INFO": "\033[32m", # Green
"WARNING": "\033[33m", # Yellow
"ERROR": "\033[31m", # Red
"CRITICAL": "\033[31;1m", # Bright Red
}
RESET = "\033[0m"
def format(self, record):
log_message = super().format(record)
color = self.COLORS.get(record.levelname)
if color is None:
return log_message
return f"{color}{log_message}{self.RESET}"
def setup_logging(verbosity):
if verbosity == 0:
log_level = logging.INFO
elif verbosity == 1:
log_level = logging.DEBUG
handler = logging.StreamHandler()
formatter = ColoredFormatter(
fmt="%(asctime)s | %(levelname)-8s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S"
)
handler.setFormatter(formatter)
logger = logging.getLogger()
logger.setLevel(log_level)
logger.addHandler(handler)
def main():
"""
Generate captions for images in a directory
and save them as .caption files.
"""
parser = argparse.ArgumentParser(
description=(
"Generate captions for images in a directory and save them as "
".caption files."
)
)
parser.add_argument(
"directory", type=str, help="Target directory containing images."
)
parser.add_argument(
"--caption_type",
type=str,
default="descriptive",
choices=CAPTION_TYPE_MAP.keys(),
help="Type of caption to generate.",
)
parser.add_argument(
"--caption_length", type=str, default="any", help="Length of the caption."
)
parser.add_argument(
"--dont-strip-commas",
action="store_true",
help=("If set, commas will not be stripped from the generated captions."),
)
parser.add_argument(
"--custom_prompt",
type=str,
help=("Custom prompt for the captioner. " "Use with --caption_type custom."),
)
parser.add_argument(
"--add-commas-to-sentence-ends",
action="store_true",
help="Add commas after periods in sentences",
)
parser.add_argument(
"--feed-from-tags",
type=int,
nargs="?",
const=-1,
help=(
"Use .tags files with the same base filename "
"as the images as input to the captioner. "
"Optionally specify the number of tags to use."
),
)
parser.add_argument(
"--artist-from-folder",
action="store_true",
help="Get the artist name from the parent folder",
)
parser.add_argument(
"--random-tags",
type=int,
help=(
"Randomly select n number of tags. "
"Only works if --feed-from-tags is enabled."
),
)
parser.add_argument(
"--dry-run",
action="store_true",
help="Run in dry-run mode without loading models or generating captions.",
)
parser.add_argument(
"-v",
"--verbose",
action="count",
default=0,
help="Increase output verbosity (can be repeated)",
)
args = parser.parse_args()
setup_logging(args.verbose)
tasks = []
image_extensions = {".webp", ".png", ".jpeg", ".jpg", ".jxl"}
for image_path in Path(args.directory).rglob("*"):
if image_path.suffix.lower() in image_extensions:
caption_file = image_path.with_suffix(".caption")
# Skip if the caption file already exists
if caption_file.exists():
logging.info(f"Skipping {image_path}: Caption file already exists.")
continue
tasks.append((image_path, caption_file))
if not tasks:
logging.error("No input file found.")
return
# Validate random-tags usage
if args.random_tags is not None and args.feed_from_tags is None:
parser.error("--random-tags can only be used when --feed-from-tags is enabled")
if args.feed_from_tags is not None and args.artist_from_folder:
raise ValueError("feed-from-tags and artist-from-folder can't be used together")
if args.feed_from_tags is not None:
logging.info("Loading e621 tag data")
tagset_normalizer = make_tagset_normalizer()
# Initialize and load models only if not in dry-run mode
if not args.dry_run:
joy_caption_model = JoyCaptionModel()
joy_caption_model.load_models()
else:
logging.info("Running in dry-run mode. Models will not be loaded.")
for image_path, caption_file in tasks:
if not args.dry_run:
input_image = Image.open(image_path).convert("RGB")
# Use custom prompt if specified
prompt = args.custom_prompt or JoyCaptionModel.get_prompt_string(
args.caption_type, args.caption_length
)
if args.feed_from_tags is not None:
prompt = prompt_from_tags(args, image_path, tagset_normalizer, prompt)
elif args.artist_from_folder:
prompt = prompt_from_folder(prompt, image_path.resolve())
if args.dry_run:
logging.info(
f"Dry run: Skipping caption generation for {image_path} with prompt:\n\t{prompt}"
)
continue
else:
logging.info(f"Prompt for {image_path}:\n\t{prompt}")
caption = joy_caption_model.generate_valid_caption(input_image, prompt)
# Replace multiple spaces with a single space
caption = " ".join(caption.split())
# Replace multiple newlines with a single newline
caption = "\n".join(
line for line in (line.strip() for line in caption.split("\n")) if line
)
# Strip commas if the --dont-strip-commas flag is not set
if not args.dont_strip_commas:
# Existing comma stripping logic
caption = re.sub(r",\s*([^\d])", r" \1", caption)
# New feature: Add commas after periods if specified
if args.add_commas_to_sentence_ends:
caption = re.sub(r"(\.)(\s+)([A-Z])", r"\1,\2\3", caption)
# Remove all newline characters
caption = caption.replace("\n", " ")
logging.info(f"Caption for {image_path}:\n\t{ColoredFormatter.COLOR_GREEN}{caption}{ColoredFormatter.RESET}\n\n")
# Save the caption to a .caption file
with open(caption_file, "w", encoding="utf-8") as f:
f.write(caption)
logging.info(f"Caption saved to {caption_file}")
RE_PARENS_SUFFIX = re.compile(r"_\([^)]+\)$")
E6DB_DATA = Path(__file__).resolve().parent / "data"
def make_tagset_normalizer():
"""
Create a TagSetNormalizer for encoding/decoding tags to and from integers.
Configures it based on the provided config.
"""
# This loads all the aliases and implications
tagset_normalizer = TagSetNormalizer(E6DB_DATA)
tagid2cat = tagset_normalizer.tag_normalizer.tag_categories
cat_artist = tag_category2id["artist"]
cat2suffix = {
tag_category2id["character"]: "_(character)",
tag_category2id["lore"]: "_(lore)",
tag_category2id["species"]: "_(species)",
tag_category2id["copyright"]: "_(copyright)",
}
# Create additional aliases for tags using simple rules
def input_map(tag, tid):
# Make an alias without parentheses, it might conflict but we'll handle
# it depending on `on_alias_conflict` config value.
without_suffix = RE_PARENS_SUFFIX.sub("", tag)
had_suffix = tag != without_suffix
if had_suffix:
yield without_suffix
# Add an alias with the suffix (special case for artist)
cat = tagid2cat[tid] if tid is not None else -1
if cat == cat_artist:
artist = without_suffix.removeprefix("by_")
if artist != without_suffix:
yield artist
if not had_suffix:
yield f"{artist}_(artist)"
else:
yield f"by_{artist}"
if not had_suffix:
yield f"by_{artist}_(artist)"
elif not had_suffix:
suffix = cat2suffix.get(cat)
if suffix is not None:
yield f"{without_suffix}{suffix}"
# Recognize tags where ':' were replaced by a space (aspect ratio)
if ":" in tag:
yield tag.replace(":", "_")
return tagset_normalizer.map_inputs(input_map, on_conflict="ignore")
def format_nl_list(word_list):
"""
Takes a list of words and generates a natural language output.
"""
n = len(word_list)
assert n > 0
if n == 1:
return word_list[0]
if n == 2:
return f"{word_list[0]} and {word_list[1]}"
# n > 2
*head, last = word_list
return ", ".join(head) + ", and " + last
TAG_SPECIES = tag_category2id["species"]
TAG_CHARACTER = tag_category2id["character"]
TAG_ARTIST = tag_category2id["artist"]
TAG_COPYRIGHT = tag_category2id["copyright"]
TAG_META = tag_category2id["meta"]
def prompt_from_tags(
args,
image_path: Path,
tagset_normalizer: TagSetNormalizer,
base_prompt: str = "Write a descriptive caption for this image in a formal tone.",
tag_freq_threshold: int = 0,
tag_string_prefix: str = "Use these tags to construct your caption:",
):
"""
Generates a prompt from tags associated with the given image.
Args:
args: Additional arguments for the function.
image_path (Path):
The path to the image file.
tagset_normalizer (TagSetNormalizer):
An instance to normalize the tag set.
"""
# Find and read the corresponding tag file
tag_file = find_tag_file(image_path)
if tag_file is None:
logging.warning(f"No tag file found for {image_path}")
return base_prompt
with open(tag_file, "r", encoding="utf-8") as f:
tags = f.read().lower().split(",")
# Get helper functions from the tagset_normalizer
tag_id_to_cat_id = tagset_normalizer.tag_normalizer.tag_categories
encode = tagset_normalizer.tag_normalizer.encode
# Initialize dictionaries and lists to store categorized tags
# These lists will contain tuples (freq, tag, tag_id)
tag_by_category: Dict[int, List[Tuple[int, str, int]]] = {
cat: [] for cat in [TAG_ARTIST, TAG_CHARACTER, TAG_COPYRIGHT, TAG_SPECIES]
}
other_tags: List[Tuple[int, str, int]] = []
implied: set = set()
# Process each tag
for tag in tags:
tag = tag.strip()
# Encode the tag into a numerical id
tag_id = encode(tag.replace(" ", "_"))
if tag_id is None:
# If tag is not recognized, add it to other_tags
other_tags.append((0, tag, 0))
implied.update(tagset_normalizer.implications_rej.get(0, ()))
continue
# Get the category of the tag
cat_id = tag_id_to_cat_id[tag_id]
# Skip meta tags
if cat_id == TAG_META:
continue
# Update implied tags
implied.update(tagset_normalizer.implications.get(tag_id, ()))
# Get the frequency of the tag
freq = tag_rank_to_freq(tag_id)
if freq < tag_freq_threshold:
continue
# Add the tag to its category, or other_tags
tag_by_category.get(cat_id, other_tags).append((int(freq), tag, tag_id))
# Sort other_tags by frequency (descending) and filter out implied tags
other_tags = sorted(
(-freq, tag, tag_id)
for freq, tag, tag_id in other_tags
if tag_id not in implied
)
# Sort tags within each category, prefering non implied tags
for cat_id, cat_list in tag_by_category.items():
tag_by_category[cat_id] = sorted(
((tag_id in implied, -freq), tag, tag_id) for freq, tag, tag_id in cat_list
)
# Handle random tag selection or tag limit if specified
if args.random_tags is not None:
# Randomly select tags if --random-tags is specified
num_tags = min(args.random_tags, len(other_tags))
other_tags = random.sample(
[
(i, tag, 0)
for i, tag in enumerate(tags[: round(args.random_tags * 1.5)])
],
num_tags,
)
elif args.feed_from_tags > 0:
# Use specified number of tags if --feed-from-tags has a positive value
other_tags = other_tags[: args.feed_from_tags]
# Prepare sentence pieces for each category
artist_tag = tag_by_category[TAG_ARTIST]
if artist_tag:
artist_list = [str(tp[1]).removeprefix("by ") for tp in artist_tag[:4]]
artist_txt = f"by {format_nl_list(artist_list)}"
else:
artist_txt = ""
character_tag = tag_by_category[TAG_CHARACTER]
if character_tag:
tags = [tag for _, tag, _ in character_tag[:4]]
character_txt = f"named {format_nl_list(tags)}"
else:
character_txt = ""
species_tag = tag_by_category[TAG_SPECIES]
if species_tag:
species_txt = (
"of a " if len(character_tag) <= 1 and len(species_tag) <= 1 else "of "
)
species_txt += format_nl_list([tp[1] for tp in species_tag[:4]])
else:
if character_tag:
species_txt = (
"of a character" if len(character_tag) <= 1 else "of characters"
)
else:
species_txt = ""
copyright_tag = tag_by_category[TAG_COPYRIGHT]
if copyright_tag:
tags = [tag for _, tag, *_ in copyright_tag[:4]]
copyright_txt = f"from {format_nl_list(tags)}"
else:
copyright_txt = ""
# Prepare the remaining tags as a string
tag_string = ", ".join(tp[1] for tp in other_tags)
# Extract the prefix and suffix around the word "image" from the base prompt
image_pos = base_prompt.find("image")
if image_pos < 0:
raise ValueError("Base prompt must contain the word 'image'")
image_pos += len("image")
base_prompt_prefix = base_prompt[:image_pos].rstrip()
base_prompt_suffix = base_prompt[image_pos:].lstrip()
pieces = [
base_prompt_prefix,
artist_txt,
species_txt,
character_txt,
copyright_txt,
base_prompt_suffix,
tag_string_prefix,
tag_string,
".",
]
logging.debug("Prompt pieces: %r", pieces)
custom_prompt = " ".join(p for p in pieces if p)
custom_prompt = custom_prompt.replace(" .", ".").replace(" ,", ",")
return custom_prompt
def find_tag_file(image_path):
"""
Find the corresponding .tags file for the given image path.
Handles cases where the image has a -(number) suffix.
"""
base_name = image_path.stem
tag_file = image_path.with_suffix(".tags")
if tag_file.exists():
return tag_file
# Handle -(number) suffix
match = re.match(r"(.+)-\d+$", base_name)
if match:
base_name = match.group(1)
tag_file = image_path.with_name(base_name).with_suffix(".tags")
if tag_file.exists():
return tag_file
return None
def prompt_from_folder(prompt, path):
artist = (
path.parent.name.replace("_", " ").replace("-", " ").replace(".", " ").title()
)
return prompt.replace("image", f"image by {artist}")
if __name__ == "__main__":
main()
|