toolkit / joy
k4d3's picture
--random for --feed-from-tags
0f0ad40
raw
history blame
21.2 kB
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
JoyCaption Alpha One
This module provides functionality for generating captions for images using a
combination of CLIP, LLM, and custom image adapters. It supports various
caption types, tones, and lengths.
The main components include:
- Loading and initializing models (CLIP, LLM, image adapter)
- Processing images and generating captions
- Command-line interface for batch processing images in a directory
"""
import os
import argparse
import re
import random
from pathlib import Path
from PIL import Image
import pillow_jxl
import torch
import torchvision.transforms.functional as TVF
from transformers import (
AutoModel,
AutoProcessor,
AutoTokenizer,
AutoModelForCausalLM,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
)
from torch import nn
CLIP_PATH = "google/siglip-so400m-patch14-384"
MODEL_PATH = "meta-llama/Meta-Llama-3.1-8B"
CHECKPOINT_PATH = Path(__file__).resolve().parent / "9em124t2-499968"
CAPTION_TYPE_MAP = {
("descriptive", "formal", False, False): [
"Write a descriptive caption for this image in a formal tone."
],
("descriptive", "formal", False, True): [
"Write a descriptive caption for this image in a formal tone within "
"{word_count} words."
],
("descriptive", "formal", True, False): [
"Write a {length} descriptive caption for this image in a formal tone."
],
("descriptive", "informal", False, False): [
"Write a descriptive caption for this image in a casual tone."
],
("descriptive", "informal", False, True): [
"Write a descriptive caption for this image in a casual tone within "
"{word_count} words."
],
("descriptive", "informal", True, False): [
"Write a {length} descriptive caption for this image in a casual tone."
],
("training_prompt", "formal", False, False): [
"Write a stable diffusion prompt for this image."
],
("training_prompt", "formal", False, True): [
"Write a stable diffusion prompt for this image within {word_count} "
"words."
],
("training_prompt", "formal", True, False): [
"Write a {length} stable diffusion prompt for this image."
],
("rng-tags", "formal", False, False): [
"Write a list of Booru tags for this image."
],
("rng-tags", "formal", False, True): [
"Write a list of Booru tags for this image within {word_count} words."
],
("rng-tags", "formal", True, False): [
"Write a {length} list of Booru tags for this image."
],
}
HF_TOKEN = os.environ.get("HF_TOKEN", None)
class ImageAdapter(nn.Module):
"""
Custom image adapter module for processing CLIP vision outputs.
This module adapts the output of a CLIP vision model to be compatible with
a text model. It supports optional layer normalization, positional
embeddings, and deep feature extraction.
Args:
input_features (int): Number of input features from the vision model.
output_features (int): Number of output features to match the text model.
ln1 (bool): Whether to use layer normalization.
pos_emb (bool): Whether to use positional embeddings.
num_image_tokens (int): Number of image tokens.
deep_extract (bool): Whether to use deep feature extraction.
"""
def __init__(
self,
input_features: int,
output_features: int,
ln1: bool,
pos_emb: bool,
num_image_tokens: int,
deep_extract: bool,
):
super().__init__()
self.deep_extract = deep_extract
if self.deep_extract:
input_features = input_features * 5
self.linear1 = nn.Linear(input_features, output_features)
self.activation = nn.GELU()
self.linear2 = nn.Linear(output_features, output_features)
self.ln1 = nn.Identity() if not ln1 else nn.LayerNorm(input_features)
self.pos_emb = None if not pos_emb else nn.Parameter(
torch.zeros(num_image_tokens, input_features)
)
self.other_tokens = nn.Embedding(3, output_features)
self.other_tokens.weight.data.normal_(mean=0.0, std=0.02)
def forward(self, vision_outputs: torch.Tensor):
"""
Forward pass of the image adapter.
Args:
vision_outputs (torch.Tensor): Output tensor from the CLIP vision model.
Returns:
torch.Tensor: Adapted image features.
"""
if self.deep_extract:
x = torch.concat((
vision_outputs[-2],
vision_outputs[3],
vision_outputs[7],
vision_outputs[13],
vision_outputs[20],
), dim=-1)
assert len(x.shape) == 3, f"Expected 3, got {len(x.shape)}"
assert x.shape[-1] == vision_outputs[-2].shape[-1] * 5, (
f"Expected {vision_outputs[-2].shape[-1] * 5}, got {x.shape[-1]}"
)
else:
x = vision_outputs[-2]
x = self.ln1(x)
if self.pos_emb is not None:
assert x.shape[-2:] == self.pos_emb.shape, (
f"Expected {self.pos_emb.shape}, got {x.shape[-2:]}"
)
x = x + self.pos_emb
x = self.linear1(x)
x = self.activation(x)
x = self.linear2(x)
other_tokens = self.other_tokens(
torch.tensor([0, 1], device=self.other_tokens.weight.device).expand(
x.shape[0], -1
)
)
assert other_tokens.shape == (x.shape[0], 2, x.shape[2]), (
f"Expected {(x.shape[0], 2, x.shape[2])}, got {other_tokens.shape}"
)
x = torch.cat((other_tokens[:, 0:1], x, other_tokens[:, 1:2]), dim=1)
return x
def get_eot_embedding(self):
"""
Get the end-of-text embedding.
Returns:
torch.Tensor: The end-of-text embedding.
"""
return self.other_tokens(
torch.tensor([2], device=self.other_tokens.weight.device)
).squeeze(0)
class JoyCaptionModel:
"""
A class for generating captions for images using CLIP, LLM, and custom image adapters.
This class encapsulates the functionality to load and initialize various models
(CLIP, LLM, image adapter) and use them to process images and generate captions.
It supports different caption types, tones, and lengths.
Attributes:
clip_model: The CLIP vision model for processing images.
text_model: The language model for generating captions.
image_adapter: Custom adapter for processing CLIP vision outputs.
tokenizer: Tokenizer for the language model.
Methods:
load_models(): Load and initialize all required models.
process_image(input_image, caption_type, caption_tone, caption_length):
Process an input image and generate a caption based on specified parameters.
"""
def __init__(self):
self.clip_model = None
self.text_model = None
self.image_adapter = None
self.tokenizer = None
def load_models(self):
"""
Load and initialize all required models (CLIP, LLM, image adapter).
"""
print("Loading CLIP")
self.clip_model = AutoModel.from_pretrained(CLIP_PATH)
self.clip_model = self.clip_model.vision_model
if (CHECKPOINT_PATH / "clip_model.pt").exists():
print("Loading VLM's custom vision model")
checkpoint = torch.load(CHECKPOINT_PATH / "clip_model.pt", map_location='cpu')
checkpoint = {k.replace("_orig_mod.module.", ""): v for k, v in checkpoint.items()}
self.clip_model.load_state_dict(checkpoint)
del checkpoint
self.clip_model.eval()
self.clip_model.requires_grad_(False)
self.clip_model.to("cuda")
print("Loading tokenizer")
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=False)
assert isinstance(self.tokenizer, PreTrainedTokenizer) or isinstance(
self.tokenizer, PreTrainedTokenizerFast
), f"Tokenizer is of type {type(self.tokenizer)}"
print("Loading LLM")
if (CHECKPOINT_PATH / "text_model").exists():
print("Loading VLM's custom text model")
self.text_model = AutoModelForCausalLM.from_pretrained(
CHECKPOINT_PATH / "text_model",
device_map=0,
torch_dtype=torch.bfloat16
)
else:
self.text_model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map="auto",
torch_dtype=torch.bfloat16
)
self.text_model.eval()
print("Loading image adapter")
self.image_adapter = ImageAdapter(
self.clip_model.config.hidden_size,
self.text_model.config.hidden_size,
False,
False,
38,
False
)
self.image_adapter.load_state_dict(
torch.load(CHECKPOINT_PATH / "image_adapter.pt", map_location="cpu")
)
self.image_adapter.eval()
self.image_adapter.to("cuda")
@torch.no_grad()
def process_image(self,
input_image: Image.Image,
caption_type: str,
caption_tone: str,
caption_length: str | int,
custom_prompt: str = None) -> str:
"""
Process an input image and generate a caption based on specified parameters.
"""
torch.cuda.empty_cache()
if caption_type == "custom" and custom_prompt:
prompt_str = custom_prompt
else:
prompt_str = self._get_prompt_string(caption_type, caption_tone, caption_length)
print(f"Prompt: {prompt_str}")
pixel_values = self._preprocess_image(input_image)
prompt = self._tokenize_prompt(prompt_str)
embedded_images = self._embed_image(pixel_values)
inputs_embeds, input_ids, attention_mask = self._construct_inputs(embedded_images, prompt)
generate_ids = self._generate_caption(inputs_embeds, input_ids, attention_mask)
caption = self._decode_caption(generate_ids, input_ids)
return caption.strip()
def _get_prompt_string(self, caption_type, caption_tone, caption_length):
length = None if caption_length == "any" else caption_length
if isinstance(length, str):
try:
length = int(length)
except ValueError:
pass
if caption_type in {"rng-tags", "training_prompt"}:
caption_tone = "formal"
prompt_key = (
caption_type,
caption_tone,
isinstance(length, str),
isinstance(length, int)
)
if prompt_key not in CAPTION_TYPE_MAP:
raise ValueError(f"Invalid caption type: {prompt_key}")
prompt_str = CAPTION_TYPE_MAP[prompt_key][0].format(
length=length, word_count=length
)
return prompt_str
def _preprocess_image(self, input_image):
image = input_image.resize((384, 384), Image.LANCZOS)
pixel_values = TVF.pil_to_tensor(image).unsqueeze(0) / 255.0
pixel_values = TVF.normalize(pixel_values, [0.5], [0.5])
pixel_values = pixel_values.to('cuda')
return pixel_values
def _tokenize_prompt(self, prompt_str):
prompt = self.tokenizer.encode(
prompt_str,
return_tensors='pt',
padding=False,
truncation=False,
add_special_tokens=False
)
return prompt
def _embed_image(self, pixel_values):
with torch.amp.autocast_mode.autocast('cuda', enabled=True):
vision_outputs = self.clip_model(pixel_values=pixel_values, output_hidden_states=True)
image_features = vision_outputs.hidden_states
embedded_images = self.image_adapter(image_features)
embedded_images = embedded_images.to('cuda')
return embedded_images
def _construct_inputs(self, embedded_images, prompt):
prompt_embeds = self.text_model.model.embed_tokens(prompt.to('cuda'))
assert prompt_embeds.shape == (1, prompt.shape[1], self.text_model.config.hidden_size), (
f"Prompt shape is {prompt_embeds.shape}, expected "
f"{(1, prompt.shape[1], self.text_model.config.hidden_size)}"
)
embedded_bos = self.text_model.model.embed_tokens(
torch.tensor([[self.tokenizer.bos_token_id]],
device=self.text_model.device,
dtype=torch.int64)
)
eot_embed = self.image_adapter.get_eot_embedding().unsqueeze(0).to(
dtype=self.text_model.dtype
)
inputs_embeds = torch.cat([
embedded_bos.expand(embedded_images.shape[0], -1, -1),
embedded_images.to(dtype=embedded_bos.dtype),
prompt_embeds.expand(embedded_images.shape[0], -1, -1),
eot_embed.expand(embedded_images.shape[0], -1, -1),
], dim=1)
input_ids = torch.cat([
torch.tensor([[self.tokenizer.bos_token_id]], dtype=torch.long),
torch.zeros((1, embedded_images.shape[1]), dtype=torch.long),
prompt,
torch.tensor([[self.tokenizer.eos_token_id]], dtype=torch.long),
], dim=1).to('cuda')
attention_mask = torch.ones_like(input_ids)
return inputs_embeds, input_ids, attention_mask
def _generate_caption(self, inputs_embeds, input_ids, attention_mask):
generate_ids = self.text_model.generate(
input_ids,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
max_new_tokens=300,
do_sample=True,
suppress_tokens=None
)
return generate_ids
def _decode_caption(self, generate_ids, input_ids):
generate_ids = generate_ids[:, input_ids.shape[1]:]
if (generate_ids[0][-1] == self.tokenizer.eos_token_id or
generate_ids[0][-1] == self.tokenizer.convert_tokens_to_ids("<|eot_id|>")):
generate_ids = generate_ids[:, :-1]
caption = self.tokenizer.batch_decode(
generate_ids,
skip_special_tokens=False,
clean_up_tokenization_spaces=False
)[0]
return caption
def main():
"""Generate captions for images in a directory and save them as .caption files."""
parser = argparse.ArgumentParser(
description="Generate captions for images in a directory and save them as .caption files."
)
parser.add_argument("directory", type=str, help="Target directory containing images.")
parser.add_argument(
"--caption_type",
type=str,
default="descriptive",
choices=["descriptive", "training_prompt", "rng-tags", "custom"],
help="Type of caption to generate."
)
parser.add_argument(
"--caption_tone",
type=str,
default="formal",
choices=["formal", "informal"],
help="Tone of the caption."
)
parser.add_argument(
"--caption_length",
type=str,
default="any",
help="Length of the caption."
)
parser.add_argument(
"--dont-strip-commas",
action="store_true",
help="If set, commas will not be stripped from the generated captions."
)
parser.add_argument(
"--custom_prompt",
type=str,
help="Custom prompt for the captioner. Use with --caption_type custom."
)
parser.add_argument(
'--add-commas-to-sentence-ends',
action='store_true',
help='Add commas after periods in sentences'
)
parser.add_argument(
'--feed-from-tags',
type=int,
nargs='?',
const=-1,
help='Use .txt files with the same base filename as the images as input to the captioner. Optionally specify the number of tags to use.'
)
parser.add_argument(
'--random-tags',
type=int,
help='Randomly select n number of tags. Only works if --feed-from-tags is enabled.'
)
args = parser.parse_args()
# Validate random-tags usage
if args.random_tags is not None and args.feed_from_tags is None:
parser.error("--random-tags can only be used when --feed-from-tags is enabled")
# Initialize and load models
joy_caption_model = JoyCaptionModel()
joy_caption_model.load_models()
# Validate custom prompt usage
if args.caption_type == "custom" and not args.custom_prompt:
parser.error("--custom_prompt is required when using --caption_type custom")
elif args.caption_type != "custom" and args.custom_prompt:
parser.error("--custom_prompt can only be used with --caption_type custom")
image_extensions = {".webp", ".png", ".jpeg", ".jpg", ".jxl"}
for image_path in Path(args.directory).rglob("*"):
if image_path.suffix.lower() in image_extensions:
caption_file = image_path.with_suffix('.caption')
# Skip if the caption file already exists
if caption_file.exists():
print(f"Skipping {image_path}: Caption file already exists.")
continue
input_image = Image.open(image_path).convert("RGB")
# Use custom prompt if specified
if args.caption_type == "custom":
caption = joy_caption_model.process_image(
input_image,
"custom",
args.caption_tone,
args.caption_length,
custom_prompt=args.custom_prompt
)
else:
# Check for --feed-from-tags
if args.feed_from_tags is not None:
tag_file = find_tag_file(image_path)
if tag_file:
with open(tag_file, 'r', encoding='utf-8') as f:
tags = f.read().strip().split(',')
if args.random_tags is not None:
# Randomly select tags if --random-tags is specified
num_tags = min(args.random_tags, len(tags))
tags = random.sample(tags, num_tags)
elif args.feed_from_tags > 0:
# Use specified number of tags if --feed-from-tags has a positive value
tags = tags[:args.feed_from_tags]
tag_string = ', '.join(tags)
custom_prompt = f"Write a descriptive caption for this image in a formal tone. Use these tags as context clues to construct your caption: {tag_string}"
caption = joy_caption_model.process_image(
input_image,
"custom",
args.caption_tone,
args.caption_length,
custom_prompt=custom_prompt
)
else:
caption = joy_caption_model.process_image(
input_image,
args.caption_type,
args.caption_tone,
args.caption_length
)
else:
caption = joy_caption_model.process_image(
input_image,
args.caption_type,
args.caption_tone,
args.caption_length
)
# Strip commas if the --dont-strip-commas flag is not set
if not args.dont_strip_commas:
# Existing comma stripping logic
caption = re.sub(r',\s*([^\d])', r' \1', caption)
# New feature: Add commas after periods if specified
if args.add_commas_to_sentence_ends:
caption = re.sub(r'(\.)(\s+)([A-Z])', r'\1,\2\3', caption)
print(f"Caption for {image_path}:\n\n{caption}\n\n")
# Save the caption to a .caption file
with open(caption_file, 'w', encoding='utf-8') as f:
f.write(caption)
print(f"Caption saved to {caption_file}")
def find_tag_file(image_path):
"""
Find the corresponding .txt file for the given image path.
Handles cases where the image has a -(number) suffix.
"""
base_name = image_path.stem
tag_file = image_path.with_suffix('.txt')
if tag_file.exists():
return tag_file
# Handle -(number) suffix
match = re.match(r'(.+)-\d+$', base_name)
if match:
base_name = match.group(1)
tag_file = image_path.with_name(base_name).with_suffix('.txt')
if tag_file.exists():
return tag_file
return None
if __name__ == "__main__":
main()