|
|
|
|
|
|
|
import torch |
|
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline |
|
import sys |
|
import os |
|
import warnings |
|
|
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
MODEL_NAME = "openai/whisper-large-v3" |
|
BATCH_SIZE = 8 |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 |
|
|
|
model = AutoModelForSpeechSeq2Seq.from_pretrained( |
|
MODEL_NAME, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True |
|
) |
|
model.to(device) |
|
|
|
processor = AutoProcessor.from_pretrained(MODEL_NAME) |
|
|
|
pipe = pipeline( |
|
"automatic-speech-recognition", |
|
model=model, |
|
tokenizer=processor.tokenizer, |
|
feature_extractor=processor.feature_extractor, |
|
# max_new_tokens=448, |
|
chunk_length_s=30, |
|
batch_size=BATCH_SIZE, |
|
return_timestamps=True, |
|
torch_dtype=torch_dtype, |
|
device=device, |
|
) |
|
|
|
def transcribe(audio_file_path, task="transcribe"): |
|
if not os.path.exists(audio_file_path): |
|
print(f"Error: The file '{audio_file_path}' does not exist.") |
|
return |
|
|
|
try: |
|
with torch.no_grad(): |
|
result = pipe(audio_file_path, generate_kwargs={"task": task}) |
|
from pprint import pprint |
|
pprint(result) |
|
return result["text"] |
|
except Exception as e: |
|
print(f"Error during transcription: {str(e)}") |
|
return None |
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) < 2: |
|
print("Usage: python script.py <audio_file_path> [task]") |
|
print("task can be 'transcribe' or 'translate' (default is 'transcribe')") |
|
sys.exit(1) |
|
|
|
audio_file_path = sys.argv[1] |
|
task = sys.argv[2] if len(sys.argv) > 2 else "transcribe" |
|
|
|
if task not in ["transcribe", "translate"]: |
|
print("Error: task must be either 'transcribe' or 'translate'") |
|
sys.exit(1) |
|
|
|
result = transcribe(audio_file_path, task) |
|
if result: |
|
print("Transcription result:") |
|
print(result) |
|
|
|
|