#!/usr/bin/env python import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import warnings # disable some warnings transformers.logging.set_verbosity_error() transformers.logging.disable_progress_bar() warnings.filterwarnings('ignore') # set device torch.set_default_device('cuda') # or 'cpu' model_name = 'cognitivecomputations/dolphin-vision-7b' # create model model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.float16, device_map='auto', trust_remote_code=True) tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True) # text prompt prompt = 'Describe this image in detail' messages = [ {"role": "user", "content": f'\n{prompt}'} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) print(text) text_chunks = [tokenizer(chunk).input_ids for chunk in text.split('')] input_ids = torch.tensor(text_chunks[0] + [-200] + text_chunks[1], dtype=torch.long).unsqueeze(0) # image, sample images can be found in images folder image = Image.open('/path/to/image.png') image_tensor = model.process_images([image], model.config).to(dtype=model.dtype) # generate output_ids = model.generate( input_ids, images=image_tensor, max_new_tokens=2048, use_cache=True)[0] print(tokenizer.decode(output_ids[input_ids.shape[1]:], skip_special_tokens=True).strip())