#!/usr/bin/env python # -*- coding: utf-8 -*- import torch from transformers import pipeline import sys import os MODEL_NAME = "openai/whisper-large-v3-turbo" BATCH_SIZE = 8 device = 0 if torch.cuda.is_available() else "cpu" pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe(audio_file_path, task="transcribe"): if not os.path.exists(audio_file_path): print(f"Error: The file '{audio_file_path}' does not exist.") return try: text = pipe(audio_file_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] return text except Exception as e: print(f"Error during transcription: {str(e)}") return None if __name__ == "__main__": if len(sys.argv) < 2: print("Usage: python script.py [task]") print("task can be 'transcribe' or 'translate' (default is 'transcribe')") sys.exit(1) audio_file_path = sys.argv[1] task = sys.argv[2] if len(sys.argv) > 2 else "transcribe" if task not in ["transcribe", "translate"]: print("Error: task must be either 'transcribe' or 'translate'") sys.exit(1) result = transcribe(audio_file_path, task) if result: print("Transcription result:") print(result)