bnjmnmarie
commited on
Commit
•
25edbfc
1
Parent(s):
86fd779
Update README.md
Browse files
README.md
CHANGED
@@ -1,21 +1,80 @@
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
-
|
5 |
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
- quant_method: bitsandbytes
|
9 |
-
- load_in_8bit: False
|
10 |
-
- load_in_4bit: True
|
11 |
-
- llm_int8_threshold: 6.0
|
12 |
-
- llm_int8_skip_modules: None
|
13 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
14 |
-
- llm_int8_has_fp16_weight: False
|
15 |
-
- bnb_4bit_quant_type: nf4
|
16 |
-
- bnb_4bit_use_double_quant: True
|
17 |
-
- bnb_4bit_compute_dtype: float16
|
18 |
-
### Framework versions
|
19 |
|
|
|
20 |
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
+
license: mit
|
4 |
+
language:
|
5 |
+
- en
|
6 |
+
- vi
|
7 |
+
datasets:
|
8 |
+
- kaitchup/opus-Vietnamese-to-English
|
9 |
+
tags:
|
10 |
+
- translation
|
11 |
---
|
12 |
+
# Model Card for Model ID
|
13 |
|
14 |
+
This is an adapter for Meta's Llama 2 7B fine-tuned for translating Vietnamese text into English.
|
15 |
+
## Model Details
|
16 |
|
17 |
+
### Model Description
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
<!-- Provide a longer summary of what this model is. -->
|
20 |
|
21 |
+
|
22 |
+
|
23 |
+
- **Developed by:** [The Kaitchup](https://kaitchup.substack.com/)
|
24 |
+
- **Model type:** LoRA Adapter for Llama 2 7B
|
25 |
+
- **Language(s) (NLP):** Vietnamese, English
|
26 |
+
- **License:** MIT license
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
## Uses
|
31 |
+
|
32 |
+
This adapter must be loaded on top of Llama 2 7B. It has been fine-tuned with QLoRA. For optimal results, the base model must be loaded with the exact same configuration used during fine-tuning.
|
33 |
+
You can use the following code to load the model:
|
34 |
+
```
|
35 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
36 |
+
import torch
|
37 |
+
from peft import PeftModel
|
38 |
+
|
39 |
+
base_model = "meta-llama/Llama-2-7b-hf"
|
40 |
+
compute_dtype = getattr(torch, "float16")
|
41 |
+
bnb_config = BitsAndBytesConfig(
|
42 |
+
load_in_4bit=True,
|
43 |
+
bnb_4bit_quant_type="nf4",
|
44 |
+
bnb_4bit_compute_dtype=compute_dtype,
|
45 |
+
bnb_4bit_use_double_quant=True,
|
46 |
+
)
|
47 |
+
model = AutoModelForCausalLM.from_pretrained(
|
48 |
+
original_model_directory, device_map={"": 0}, quantization_config=bnb_config
|
49 |
+
)
|
50 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model, use_fast=True)
|
51 |
+
model = PeftModel.from_pretrained(model, "kaitchup/Llama-2-7b-mt-Vietnamese-to-English")
|
52 |
+
```
|
53 |
+
|
54 |
+
Then, run the model as follows:
|
55 |
+
|
56 |
+
```
|
57 |
+
my_text = "" #put your text to translate here
|
58 |
+
|
59 |
+
prompt = my_text+" ###>"
|
60 |
+
|
61 |
+
tokenized_input = tokenizer(prompt, return_tensors="pt")
|
62 |
+
input_ids = tokenized_input["input_ids"].cuda()
|
63 |
+
|
64 |
+
generation_output = model.generate(
|
65 |
+
input_ids=input_ids,
|
66 |
+
num_beams=10,
|
67 |
+
return_dict_in_generate=True,
|
68 |
+
output_scores=True,
|
69 |
+
max_new_tokens=130
|
70 |
+
|
71 |
+
)
|
72 |
+
for seq in generation_output.sequences:
|
73 |
+
output = tokenizer.decode(seq, skip_special_tokens=True)
|
74 |
+
print(output.split("###>")[1].strip())
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
## Model Card Contact
|
79 |
+
|
80 |
+
[The Kaitchup](https://kaitchup.substack.com/)
|