kambehmw commited on
Commit
9aba38e
·
1 Parent(s): 633ac6f

Add message

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4b5283710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4b52837a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4b5283830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4b52838c0>", "_build": "<function ActorCriticPolicy._build at 0x7fb4b5283950>", "forward": "<function ActorCriticPolicy.forward at 0x7fb4b52839e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4b5283a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb4b5283b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4b5283b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4b5283c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4b5283cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb4b52a8180>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655649952.5612879, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJoQgPtcbejpLiMY7ZrUBOTfkYzw2r+I5AACAPwAAgD/zmCA/v7w0vrG0tjv6FRi6P10IvuDVhjoAAIA/AACAPxTIB7/Dwko909WRObsL4Tdnv6c+fPEFuAAAgD8AAIA/mgFiPMNxUbpRqkE71WcYOH+MHrrw4PG5AACAPwAAgD+AU1G93W1FPnxUpz2SmEy+8ZVlPRWwgD0AAAAAAAAAAIamED6kqxS7CmPVOypyULm4DDC8FosvugAAgD8AAIA/I+YCPyEFHb6yvYI8MWuwvMis1r2DJ5A9AACAPwAAgD+a7Jq9SHeUusryd7zHBg+9FhqsO4gn+j0AAIA/AAAAAI10k72vpnU9vsoPPRdKSb5Hr4E9rromvQAAAAAAAAAAysOOPtdQbzzeZGA7vAZkOUTSAj7uSSC6AACAPwAAgD/Nayg+gTGmPyaIkz6ZbJK+6J4gPvj9MD4AAAAAAAAAADNliDwUZIW6SkcWvHIAGL1C4726N6aEuwAAAAAAAAAAWlT+vmCwXz9ZKCC9YlqCvqtjBD1yjno8AAAAAAAAAADN6Be9FISMuhD1xzshMFM2etj3Oe4jSjUAAIA/AACAP55ECb85AAU++me3O31PTTkZu8c9RGE+OgAAgD8AAIA/ZrLaviwnFj7TBVW9nSZHvnEo5Ty2ZuA5AAAAAAAAAACUdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5GpkV9p2Y0CUhpRSlIwBbJRN6AOMAXSUR0CCP635vcagdX2UKGgGaAloD0MI5QrvchEoW0CUhpRSlGgVTegDaBZHQIJtCSq2jO91fZQoaAZoCWgPQwjr4GBvYjZVQJSGlFKUaBVN6ANoFkdAgnEPphWo33V9lChoBmgJaA9DCFQ57Sk5HltAlIaUUpRoFU3oA2gWR0CCfiO3DvVmdX2UKGgGaAloD0MIjLrW3idlYUCUhpRSlGgVTegDaBZHQIJ/OqrBCUp1fZQoaAZoCWgPQwjRH5p5cu1fQJSGlFKUaBVN6ANoFkdAgoEsTN+so3V9lChoBmgJaA9DCG02VmKeFlhAlIaUUpRoFU3oA2gWR0CCkPeQdS2qdX2UKGgGaAloD0MI7Es2HmxDVkCUhpRSlGgVTegDaBZHQIKTadtl7MR1fZQoaAZoCWgPQwhVTKWfcOtcQJSGlFKUaBVN6ANoFkdAgpR0TL4etHV9lChoBmgJaA9DCHrDfeTWaFlAlIaUUpRoFU3oA2gWR0CCm1Z13dKvdX2UKGgGaAloD0MIkPXU6quhT8CUhpRSlGgVTRwBaBZHQIKhZmqYJE91fZQoaAZoCWgPQwjfjJqvksc+QJSGlFKUaBVNQgFoFkdAgqUOk+HJtHV9lChoBmgJaA9DCDMa+bziTlxAlIaUUpRoFU3oA2gWR0CCqMK77Kq5dX2UKGgGaAloD0MI9UiD21raYUCUhpRSlGgVTegDaBZHQIKplRxcVxl1fZQoaAZoCWgPQwgbgA2IEHcCQJSGlFKUaBVL92gWR0CCsBdN34bkdX2UKGgGaAloD0MIV3vYCwUjZ0CUhpRSlGgVTR4DaBZHQIK0NvKlpGp1fZQoaAZoCWgPQwi0ccRafIrmv5SGlFKUaBVNOAFoFkdAgrVX+l0o0HV9lChoBmgJaA9DCKmFkskp1WBAlIaUUpRoFU3oA2gWR0CCwwTnJT2ndX2UKGgGaAloD0MIByeiX1u3LECUhpRSlGgVTRcBaBZHQILLBg3Lmp51fZQoaAZoCWgPQwiXyXA8nzVgQJSGlFKUaBVN6ANoFkdAgs5wA+6iCnV9lChoBmgJaA9DCNpyLsVVHVtAlIaUUpRoFU3oA2gWR0CC3s2OQyRCdX2UKGgGaAloD0MIiIVa07wZW0CUhpRSlGgVTegDaBZHQILiNDBuXNV1fZQoaAZoCWgPQwi/u5UlOvVOQJSGlFKUaBVN6ANoFkdAgw/lajesP3V9lChoBmgJaA9DCIHptG6DZlTAlIaUUpRoFU05AWgWR0CDEz2MbWEsdX2UKGgGaAloD0MIwap6+Z1NWUCUhpRSlGgVTegDaBZHQIMUNHSWqtJ1fZQoaAZoCWgPQwjT2cngKCBUQJSGlFKUaBVN6ANoFkdAgySU/wAlwHV9lChoBmgJaA9DCHYyOEpevSbAlIaUUpRoFU0aAWgWR0CDLRVe8f3fdX2UKGgGaAloD0MItp4hHLNTXUCUhpRSlGgVTegDaBZHQIM6Y9C/oJR1fZQoaAZoCWgPQwiTUWUYd49YQJSGlFKUaBVN6ANoFkdAg0LxJNCZ4XV9lChoBmgJaA9DCLg81owMsg9AlIaUUpRoFUvqaBZHQINFI+jdpIt1fZQoaAZoCWgPQwjsFKsGYYFWQJSGlFKUaBVN6ANoFkdAg0mLFXJYDHV9lChoBmgJaA9DCKw41VqYk1tAlIaUUpRoFU3oA2gWR0CDTTQwblzVdX2UKGgGaAloD0MIdHtJY7R0QECUhpRSlGgVTegDaBZHQINRDJjlPrR1fZQoaAZoCWgPQwiynITSFyRdQJSGlFKUaBVN6ANoFkdAg1jirT6SDHV9lChoBmgJaA9DCDYdAdys82JAlIaUUpRoFU3oA2gWR0CDXUSSvC/HdX2UKGgGaAloD0MISn7Er9h/YUCUhpRSlGgVTegDaBZHQINeduJk5IZ1fZQoaAZoCWgPQwiOHyqNmAkgQJSGlFKUaBVL9WgWR0CDYPmdRR/FdX2UKGgGaAloD0MIWB6kp8hBD8CUhpRSlGgVTUwBaBZHQIN0BAt4A0d1fZQoaAZoCWgPQwjJy5pY4HldQJSGlFKUaBVN6ANoFkdAg3YZAQg9vHV9lChoBmgJaA9DCBGo/kEkVFhAlIaUUpRoFU3oA2gWR0CDeRZoPCl8dX2UKGgGaAloD0MIuhPsv845XUCUhpRSlGgVTegDaBZHQIOIXs5XEIh1fZQoaAZoCWgPQwiEZ0KTxJJSQJSGlFKUaBVN6ANoFkdAg7hkk0JnhHV9lChoBmgJaA9DCL72zJKA9GBAlIaUUpRoFU3oA2gWR0CDu5v0h/y5dX2UKGgGaAloD0MIQ6ooXmVtLECUhpRSlGgVS+toFkdAg7w0SZjQRnV9lChoBmgJaA9DCK7zb5f9QGFAlIaUUpRoFU3oA2gWR0CDvHHR1HOKdX2UKGgGaAloD0MI3xYs1QVUPcCUhpRSlGgVTQgBaBZHQIPNavkili11fZQoaAZoCWgPQwgiiV5GsVdeQJSGlFKUaBVN6ANoFkdAg9K5d4Vym3V9lChoBmgJaA9DCIrnbAGh411AlIaUUpRoFU3oA2gWR0CD3kmsvIwNdX2UKGgGaAloD0MI9KW3PxdOV8CUhpRSlGgVTVIBaBZHQIPlSJ9Aood1fZQoaAZoCWgPQwiQoWMHlX1hQJSGlFKUaBVN6ANoFkdAg+gmpda+vnV9lChoBmgJaA9DCE0SS8rd715AlIaUUpRoFU3oA2gWR0CD8tdnkDISdX2UKGgGaAloD0MItHQF24isXUCUhpRSlGgVTegDaBZHQIP4gLy+YdB1fZQoaAZoCWgPQwioUUgyK5tjQJSGlFKUaBVN6ANoFkdAhAA0PH1e0HV9lChoBmgJaA9DCPdbO1GShWJAlIaUUpRoFU3oA2gWR0CEBH8+A3DOdX2UKGgGaAloD0MIyhZJu9EWW0CUhpRSlGgVTegDaBZHQIQFsUGmk311fZQoaAZoCWgPQwgWwmosYRJbQJSGlFKUaBVN6ANoFkdAhAgpe3QUpXV9lChoBmgJaA9DCDXQfM7d9V1AlIaUUpRoFU3oA2gWR0CEGjsWweNldX2UKGgGaAloD0MIYAZjRKI7X0CUhpRSlGgVTegDaBZHQIQcc83dbgV1fZQoaAZoCWgPQwiNXg1QGhxhQJSGlFKUaBVN6ANoFkdAhEHH1e0G/3V9lChoBmgJaA9DCD60jxX8plRAlIaUUpRoFU3oA2gWR0CEan0dRzikdX2UKGgGaAloD0MIveKpR5q1YUCUhpRSlGgVTegDaBZHQIRrmq1gH/t1fZQoaAZoCWgPQwgRqtTsgbVkQJSGlFKUaBVNCQNoFkdAhHyjDTBqK3V9lChoBmgJaA9DCGRd3EYDeV1AlIaUUpRoFU3oA2gWR0CEgRlDneSCdX2UKGgGaAloD0MIFJM3wMzmXUCUhpRSlGgVTegDaBZHQISGqxmkFfR1fZQoaAZoCWgPQwiQTfIjfqk4wJSGlFKUaBVNLAFoFkdAhJFtL+PzWnV9lChoBmgJaA9DCGh5HtydAU5AlIaUUpRoFU3oA2gWR0CEkuqVhTfjdX2UKGgGaAloD0MIWmd8X1wmY0CUhpRSlGgVTeICaBZHQISYWy/sVtZ1fZQoaAZoCWgPQwjohqbs9KpeQJSGlFKUaBVN6ANoFkdAhJzZhz/6wnV9lChoBmgJaA9DCPCK4H8rxltAlIaUUpRoFU3oA2gWR0CEpHB55Z8sdX2UKGgGaAloD0MID2H8NO4dWECUhpRSlGgVTegDaBZHQISoK1TisGR1fZQoaAZoCWgPQwj8Uj9vKiIWwJSGlFKUaBVNZgFoFkdAhK3NX5nDi3V9lChoBmgJaA9DCCWQErs24GBAlIaUUpRoFU3oA2gWR0CEr5V2A5JcdX2UKGgGaAloD0MI+5C3XH10YUCUhpRSlGgVTegDaBZHQISzgk1Mue11fZQoaAZoCWgPQwhB0xIro0tVQJSGlFKUaBVN6ANoFkdAhLSHzH0btXV9lChoBmgJaA9DCLmLMEW5PC7AlIaUUpRoFU0KAWgWR0CEtwd+5OJtdX2UKGgGaAloD0MITPp7KTzKXUCUhpRSlGgVTegDaBZHQITF23MINVl1fZQoaAZoCWgPQwjLSSh9ISNTQJSGlFKUaBVN6ANoFkdAhMelhPTG53V9lChoBmgJaA9DCDEIrBxaPkvAlIaUUpRoFU1BAWgWR0CEyBZdv864dX2UKGgGaAloD0MI1xLyQc9yNUCUhpRSlGgVTS8BaBZHQITRZomG/N91fZQoaAZoCWgPQwgI5ujxey9ZQJSGlFKUaBVN6ANoFkdAhOi0Mw1zhnV9lChoBmgJaA9DCIaqmEo/+VxAlIaUUpRoFU3oA2gWR0CE6aVh1DBudX2UKGgGaAloD0MIqFMe3QjVXECUhpRSlGgVTegDaBZHQIUdoVTJhfB1fZQoaAZoCWgPQwh9XBsqxmU1wJSGlFKUaBVNQwFoFkdAhSH8z67/XHV9lChoBmgJaA9DCH/4+e/B5GFAlIaUUpRoFU3oA2gWR0CFJ45AhStOdX2UKGgGaAloD0MIW5iFds4FYUCUhpRSlGgVTegDaBZHQIUx96JIlMR1fZQoaAZoCWgPQwj3sBcK2CRdQJSGlFKUaBVN6ANoFkdAhTNPZZjhDXV9lChoBmgJaA9DCOLNGryvqiTAlIaUUpRoFU0gAWgWR0CFNDlKbrkbdX2UKGgGaAloD0MI2Qkvwam+VECUhpRSlGgVTegDaBZHQIU73tBv73x1fZQoaAZoCWgPQwgIym37HsNfQJSGlFKUaBVN6ANoFkdAhUZl7MPjGXV9lChoBmgJaA9DCDSg3oyaDV1AlIaUUpRoFU3oA2gWR0CFTA4d6sySdX2UKGgGaAloD0MIStQLPs22XUCUhpRSlGgVTegDaBZHQIVSDlkpZwJ1fZQoaAZoCWgPQwgANiBC3MJhQJSGlFKUaBVN6ANoFkdAhVM256MR6HV9lChoBmgJaA9DCGb5ugz/MFpAlIaUUpRoFU3oA2gWR0CFVeR5C4SZdX2UKGgGaAloD0MI12oPeyE/Y0CUhpRSlGgVTcABaBZHQIVa1jslb/x1fZQoaAZoCWgPQwjtZkY/GjRbQJSGlFKUaBVN6ANoFkdAhWUDFAE+xHV9lChoBmgJaA9DCL5Nf/YjLFFAlIaUUpRoFU3oA2gWR0CFZsuDBdledX2UKGgGaAloD0MIQnqKHCKrXECUhpRSlGgVTegDaBZHQIVnOW2PT5R1fZQoaAZoCWgPQwh0stR6v9kuwJSGlFKUaBVNTgFoFkdAhWwLYf4h2XV9lChoBmgJaA9DCPSkTGpoU0PAlIaUUpRoFU0UAWgWR0CFelsfJV81dX2UKGgGaAloD0MIYAZjRKIWXECUhpRSlGgVTegDaBZHQIWFACr92ox1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:016ed5819868d19741b127d657d06e937f8e5642f95feb483c743a559d135cd5
3
+ size 144152
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb4b5283710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb4b52837a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb4b5283830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb4b52838c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb4b5283950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb4b52839e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb4b5283a70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb4b5283b00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb4b5283b90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb4b5283c20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb4b5283cb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fb4b52a8180>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 507904,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1655649952.5612879,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAJoQgPtcbejpLiMY7ZrUBOTfkYzw2r+I5AACAPwAAgD/zmCA/v7w0vrG0tjv6FRi6P10IvuDVhjoAAIA/AACAPxTIB7/Dwko909WRObsL4Tdnv6c+fPEFuAAAgD8AAIA/mgFiPMNxUbpRqkE71WcYOH+MHrrw4PG5AACAPwAAgD+AU1G93W1FPnxUpz2SmEy+8ZVlPRWwgD0AAAAAAAAAAIamED6kqxS7CmPVOypyULm4DDC8FosvugAAgD8AAIA/I+YCPyEFHb6yvYI8MWuwvMis1r2DJ5A9AACAPwAAgD+a7Jq9SHeUusryd7zHBg+9FhqsO4gn+j0AAIA/AAAAAI10k72vpnU9vsoPPRdKSb5Hr4E9rromvQAAAAAAAAAAysOOPtdQbzzeZGA7vAZkOUTSAj7uSSC6AACAPwAAgD/Nayg+gTGmPyaIkz6ZbJK+6J4gPvj9MD4AAAAAAAAAADNliDwUZIW6SkcWvHIAGL1C4726N6aEuwAAAAAAAAAAWlT+vmCwXz9ZKCC9YlqCvqtjBD1yjno8AAAAAAAAAADN6Be9FISMuhD1xzshMFM2etj3Oe4jSjUAAIA/AACAP55ECb85AAU++me3O31PTTkZu8c9RGE+OgAAgD8AAIA/ZrLaviwnFj7TBVW9nSZHvnEo5Ty2ZuA5AAAAAAAAAACUdJRiLg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gASVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5GpkV9p2Y0CUhpRSlIwBbJRN6AOMAXSUR0CCP635vcagdX2UKGgGaAloD0MI5QrvchEoW0CUhpRSlGgVTegDaBZHQIJtCSq2jO91fZQoaAZoCWgPQwjr4GBvYjZVQJSGlFKUaBVN6ANoFkdAgnEPphWo33V9lChoBmgJaA9DCFQ57Sk5HltAlIaUUpRoFU3oA2gWR0CCfiO3DvVmdX2UKGgGaAloD0MIjLrW3idlYUCUhpRSlGgVTegDaBZHQIJ/OqrBCUp1fZQoaAZoCWgPQwjRH5p5cu1fQJSGlFKUaBVN6ANoFkdAgoEsTN+so3V9lChoBmgJaA9DCG02VmKeFlhAlIaUUpRoFU3oA2gWR0CCkPeQdS2qdX2UKGgGaAloD0MI7Es2HmxDVkCUhpRSlGgVTegDaBZHQIKTadtl7MR1fZQoaAZoCWgPQwhVTKWfcOtcQJSGlFKUaBVN6ANoFkdAgpR0TL4etHV9lChoBmgJaA9DCHrDfeTWaFlAlIaUUpRoFU3oA2gWR0CCm1Z13dKvdX2UKGgGaAloD0MIkPXU6quhT8CUhpRSlGgVTRwBaBZHQIKhZmqYJE91fZQoaAZoCWgPQwjfjJqvksc+QJSGlFKUaBVNQgFoFkdAgqUOk+HJtHV9lChoBmgJaA9DCDMa+bziTlxAlIaUUpRoFU3oA2gWR0CCqMK77Kq5dX2UKGgGaAloD0MI9UiD21raYUCUhpRSlGgVTegDaBZHQIKplRxcVxl1fZQoaAZoCWgPQwgbgA2IEHcCQJSGlFKUaBVL92gWR0CCsBdN34bkdX2UKGgGaAloD0MIV3vYCwUjZ0CUhpRSlGgVTR4DaBZHQIK0NvKlpGp1fZQoaAZoCWgPQwi0ccRafIrmv5SGlFKUaBVNOAFoFkdAgrVX+l0o0HV9lChoBmgJaA9DCKmFkskp1WBAlIaUUpRoFU3oA2gWR0CCwwTnJT2ndX2UKGgGaAloD0MIByeiX1u3LECUhpRSlGgVTRcBaBZHQILLBg3Lmp51fZQoaAZoCWgPQwiXyXA8nzVgQJSGlFKUaBVN6ANoFkdAgs5wA+6iCnV9lChoBmgJaA9DCNpyLsVVHVtAlIaUUpRoFU3oA2gWR0CC3s2OQyRCdX2UKGgGaAloD0MIiIVa07wZW0CUhpRSlGgVTegDaBZHQILiNDBuXNV1fZQoaAZoCWgPQwi/u5UlOvVOQJSGlFKUaBVN6ANoFkdAgw/lajesP3V9lChoBmgJaA9DCIHptG6DZlTAlIaUUpRoFU05AWgWR0CDEz2MbWEsdX2UKGgGaAloD0MIwap6+Z1NWUCUhpRSlGgVTegDaBZHQIMUNHSWqtJ1fZQoaAZoCWgPQwjT2cngKCBUQJSGlFKUaBVN6ANoFkdAgySU/wAlwHV9lChoBmgJaA9DCHYyOEpevSbAlIaUUpRoFU0aAWgWR0CDLRVe8f3fdX2UKGgGaAloD0MItp4hHLNTXUCUhpRSlGgVTegDaBZHQIM6Y9C/oJR1fZQoaAZoCWgPQwiTUWUYd49YQJSGlFKUaBVN6ANoFkdAg0LxJNCZ4XV9lChoBmgJaA9DCLg81owMsg9AlIaUUpRoFUvqaBZHQINFI+jdpIt1fZQoaAZoCWgPQwjsFKsGYYFWQJSGlFKUaBVN6ANoFkdAg0mLFXJYDHV9lChoBmgJaA9DCKw41VqYk1tAlIaUUpRoFU3oA2gWR0CDTTQwblzVdX2UKGgGaAloD0MIdHtJY7R0QECUhpRSlGgVTegDaBZHQINRDJjlPrR1fZQoaAZoCWgPQwiynITSFyRdQJSGlFKUaBVN6ANoFkdAg1jirT6SDHV9lChoBmgJaA9DCDYdAdys82JAlIaUUpRoFU3oA2gWR0CDXUSSvC/HdX2UKGgGaAloD0MISn7Er9h/YUCUhpRSlGgVTegDaBZHQINeduJk5IZ1fZQoaAZoCWgPQwiOHyqNmAkgQJSGlFKUaBVL9WgWR0CDYPmdRR/FdX2UKGgGaAloD0MIWB6kp8hBD8CUhpRSlGgVTUwBaBZHQIN0BAt4A0d1fZQoaAZoCWgPQwjJy5pY4HldQJSGlFKUaBVN6ANoFkdAg3YZAQg9vHV9lChoBmgJaA9DCBGo/kEkVFhAlIaUUpRoFU3oA2gWR0CDeRZoPCl8dX2UKGgGaAloD0MIuhPsv845XUCUhpRSlGgVTegDaBZHQIOIXs5XEIh1fZQoaAZoCWgPQwiEZ0KTxJJSQJSGlFKUaBVN6ANoFkdAg7hkk0JnhHV9lChoBmgJaA9DCL72zJKA9GBAlIaUUpRoFU3oA2gWR0CDu5v0h/y5dX2UKGgGaAloD0MIQ6ooXmVtLECUhpRSlGgVS+toFkdAg7w0SZjQRnV9lChoBmgJaA9DCK7zb5f9QGFAlIaUUpRoFU3oA2gWR0CDvHHR1HOKdX2UKGgGaAloD0MI3xYs1QVUPcCUhpRSlGgVTQgBaBZHQIPNavkili11fZQoaAZoCWgPQwgiiV5GsVdeQJSGlFKUaBVN6ANoFkdAg9K5d4Vym3V9lChoBmgJaA9DCIrnbAGh411AlIaUUpRoFU3oA2gWR0CD3kmsvIwNdX2UKGgGaAloD0MI9KW3PxdOV8CUhpRSlGgVTVIBaBZHQIPlSJ9Aood1fZQoaAZoCWgPQwiQoWMHlX1hQJSGlFKUaBVN6ANoFkdAg+gmpda+vnV9lChoBmgJaA9DCE0SS8rd715AlIaUUpRoFU3oA2gWR0CD8tdnkDISdX2UKGgGaAloD0MItHQF24isXUCUhpRSlGgVTegDaBZHQIP4gLy+YdB1fZQoaAZoCWgPQwioUUgyK5tjQJSGlFKUaBVN6ANoFkdAhAA0PH1e0HV9lChoBmgJaA9DCPdbO1GShWJAlIaUUpRoFU3oA2gWR0CEBH8+A3DOdX2UKGgGaAloD0MIyhZJu9EWW0CUhpRSlGgVTegDaBZHQIQFsUGmk311fZQoaAZoCWgPQwgWwmosYRJbQJSGlFKUaBVN6ANoFkdAhAgpe3QUpXV9lChoBmgJaA9DCDXQfM7d9V1AlIaUUpRoFU3oA2gWR0CEGjsWweNldX2UKGgGaAloD0MIYAZjRKI7X0CUhpRSlGgVTegDaBZHQIQcc83dbgV1fZQoaAZoCWgPQwiNXg1QGhxhQJSGlFKUaBVN6ANoFkdAhEHH1e0G/3V9lChoBmgJaA9DCD60jxX8plRAlIaUUpRoFU3oA2gWR0CEan0dRzikdX2UKGgGaAloD0MIveKpR5q1YUCUhpRSlGgVTegDaBZHQIRrmq1gH/t1fZQoaAZoCWgPQwgRqtTsgbVkQJSGlFKUaBVNCQNoFkdAhHyjDTBqK3V9lChoBmgJaA9DCGRd3EYDeV1AlIaUUpRoFU3oA2gWR0CEgRlDneSCdX2UKGgGaAloD0MIFJM3wMzmXUCUhpRSlGgVTegDaBZHQISGqxmkFfR1fZQoaAZoCWgPQwiQTfIjfqk4wJSGlFKUaBVNLAFoFkdAhJFtL+PzWnV9lChoBmgJaA9DCGh5HtydAU5AlIaUUpRoFU3oA2gWR0CEkuqVhTfjdX2UKGgGaAloD0MIWmd8X1wmY0CUhpRSlGgVTeICaBZHQISYWy/sVtZ1fZQoaAZoCWgPQwjohqbs9KpeQJSGlFKUaBVN6ANoFkdAhJzZhz/6wnV9lChoBmgJaA9DCPCK4H8rxltAlIaUUpRoFU3oA2gWR0CEpHB55Z8sdX2UKGgGaAloD0MID2H8NO4dWECUhpRSlGgVTegDaBZHQISoK1TisGR1fZQoaAZoCWgPQwj8Uj9vKiIWwJSGlFKUaBVNZgFoFkdAhK3NX5nDi3V9lChoBmgJaA9DCCWQErs24GBAlIaUUpRoFU3oA2gWR0CEr5V2A5JcdX2UKGgGaAloD0MI+5C3XH10YUCUhpRSlGgVTegDaBZHQISzgk1Mue11fZQoaAZoCWgPQwhB0xIro0tVQJSGlFKUaBVN6ANoFkdAhLSHzH0btXV9lChoBmgJaA9DCLmLMEW5PC7AlIaUUpRoFU0KAWgWR0CEtwd+5OJtdX2UKGgGaAloD0MITPp7KTzKXUCUhpRSlGgVTegDaBZHQITF23MINVl1fZQoaAZoCWgPQwjLSSh9ISNTQJSGlFKUaBVN6ANoFkdAhMelhPTG53V9lChoBmgJaA9DCDEIrBxaPkvAlIaUUpRoFU1BAWgWR0CEyBZdv864dX2UKGgGaAloD0MI1xLyQc9yNUCUhpRSlGgVTS8BaBZHQITRZomG/N91fZQoaAZoCWgPQwgI5ujxey9ZQJSGlFKUaBVN6ANoFkdAhOi0Mw1zhnV9lChoBmgJaA9DCIaqmEo/+VxAlIaUUpRoFU3oA2gWR0CE6aVh1DBudX2UKGgGaAloD0MIqFMe3QjVXECUhpRSlGgVTegDaBZHQIUdoVTJhfB1fZQoaAZoCWgPQwh9XBsqxmU1wJSGlFKUaBVNQwFoFkdAhSH8z67/XHV9lChoBmgJaA9DCH/4+e/B5GFAlIaUUpRoFU3oA2gWR0CFJ45AhStOdX2UKGgGaAloD0MIW5iFds4FYUCUhpRSlGgVTegDaBZHQIUx96JIlMR1fZQoaAZoCWgPQwj3sBcK2CRdQJSGlFKUaBVN6ANoFkdAhTNPZZjhDXV9lChoBmgJaA9DCOLNGryvqiTAlIaUUpRoFU0gAWgWR0CFNDlKbrkbdX2UKGgGaAloD0MI2Qkvwam+VECUhpRSlGgVTegDaBZHQIU73tBv73x1fZQoaAZoCWgPQwgIym37HsNfQJSGlFKUaBVN6ANoFkdAhUZl7MPjGXV9lChoBmgJaA9DCDSg3oyaDV1AlIaUUpRoFU3oA2gWR0CFTA4d6sySdX2UKGgGaAloD0MIStQLPs22XUCUhpRSlGgVTegDaBZHQIVSDlkpZwJ1fZQoaAZoCWgPQwgANiBC3MJhQJSGlFKUaBVN6ANoFkdAhVM256MR6HV9lChoBmgJaA9DCGb5ugz/MFpAlIaUUpRoFU3oA2gWR0CFVeR5C4SZdX2UKGgGaAloD0MI12oPeyE/Y0CUhpRSlGgVTcABaBZHQIVa1jslb/x1fZQoaAZoCWgPQwjtZkY/GjRbQJSGlFKUaBVN6ANoFkdAhWUDFAE+xHV9lChoBmgJaA9DCL5Nf/YjLFFAlIaUUpRoFU3oA2gWR0CFZsuDBdledX2UKGgGaAloD0MIQnqKHCKrXECUhpRSlGgVTegDaBZHQIVnOW2PT5R1fZQoaAZoCWgPQwh0stR6v9kuwJSGlFKUaBVNTgFoFkdAhWwLYf4h2XV9lChoBmgJaA9DCPSkTGpoU0PAlIaUUpRoFU0UAWgWR0CFelsfJV81dX2UKGgGaAloD0MIYAZjRKIWXECUhpRSlGgVTegDaBZHQIWFACr92ox1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c8c173b2e034cba75cc96762cbbfd3eec89b95732c1ef6a5e0c43d200d223b9
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb44b7e8c30deb683aeb87a2c1d8672bc847e7e61cf35674e2e91e1d42709082
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 121.5986761643288, "std_reward": 59.316103219650024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-19T15:00:12.073625"}