--- library_name: transformers tags: - generated_from_trainer datasets: - kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj metrics: - accuracy model-index: - name: opt-babylm2-rewritten-clean-spacy_random-removal-num-adj-earlystop-bpe_seed-1024_1e-3 results: - task: name: Causal Language Modeling type: text-generation dataset: name: kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj type: kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj metrics: - name: Accuracy type: accuracy value: 0.4785579769152222 --- # opt-babylm2-rewritten-clean-spacy_random-removal-num-adj-earlystop-bpe_seed-1024_1e-3 This model was trained from scratch on the kanishka/babylm2-rewritten-clean-spacy_random-removal-num-adj dataset. It achieves the following results on the evaluation set: - Loss: 2.6847 - Accuracy: 0.4786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 64 - seed: 1024 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 32000 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:-----:|:---------------:|:--------:| | 4.0912 | 0.9997 | 2240 | 3.8117 | 0.3613 | | 3.4432 | 1.9997 | 4480 | 3.2982 | 0.4102 | | 3.1317 | 2.9997 | 6720 | 3.0935 | 0.4303 | | 2.9687 | 3.9997 | 8960 | 2.9876 | 0.4411 | | 2.8476 | 4.9997 | 11200 | 2.9233 | 0.4474 | | 2.7908 | 5.9997 | 13440 | 2.8864 | 0.4513 | | 2.7475 | 6.9997 | 15680 | 2.8587 | 0.4544 | | 2.7106 | 7.9997 | 17920 | 2.8397 | 0.4567 | | 2.6915 | 8.9997 | 20160 | 2.8251 | 0.4583 | | 2.6701 | 9.9997 | 22400 | 2.8133 | 0.4597 | | 2.6549 | 10.9997 | 24640 | 2.8065 | 0.4606 | | 2.6374 | 11.9997 | 26880 | 2.7963 | 0.4614 | | 2.6417 | 12.9997 | 29120 | 2.7917 | 0.4621 | | 2.6321 | 13.9997 | 31360 | 2.7886 | 0.4626 | | 2.6147 | 14.9997 | 33600 | 2.7674 | 0.4653 | | 2.571 | 15.9997 | 35840 | 2.7426 | 0.4684 | | 2.5232 | 16.9997 | 38080 | 2.7212 | 0.4715 | | 2.4666 | 17.9997 | 40320 | 2.7036 | 0.4742 | | 2.4024 | 18.9997 | 42560 | 2.6877 | 0.4770 | | 2.3301 | 19.9997 | 44800 | 2.6847 | 0.4786 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0