--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.92 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3639 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0693 | 1.0 | 112 | 0.6245 | 0.83 | | 0.6084 | 2.0 | 225 | 0.5320 | 0.81 | | 0.5394 | 3.0 | 337 | 0.4683 | 0.85 | | 0.1575 | 4.0 | 450 | 0.5772 | 0.87 | | 0.0049 | 5.0 | 562 | 0.4796 | 0.88 | | 0.0014 | 6.0 | 675 | 0.4202 | 0.94 | | 0.0002 | 7.0 | 787 | 0.4796 | 0.9 | | 0.0002 | 8.0 | 900 | 0.3534 | 0.89 | | 0.1367 | 9.0 | 1012 | 0.3734 | 0.91 | | 0.0001 | 9.96 | 1120 | 0.3639 | 0.92 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3