--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5269 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9286 | 0.99 | 56 | 1.7845 | 0.56 | | 1.2162 | 2.0 | 113 | 1.1310 | 0.74 | | 0.8715 | 2.99 | 169 | 0.8334 | 0.75 | | 0.6735 | 4.0 | 226 | 0.7352 | 0.79 | | 0.4007 | 4.99 | 282 | 0.5135 | 0.87 | | 0.241 | 6.0 | 339 | 0.7801 | 0.76 | | 0.181 | 6.99 | 395 | 0.5440 | 0.81 | | 0.1336 | 8.0 | 452 | 0.5280 | 0.85 | | 0.0526 | 8.99 | 508 | 0.4992 | 0.87 | | 0.0315 | 9.91 | 560 | 0.5269 | 0.86 | ### Framework versions - Transformers 4.32.0.dev0 - Pytorch 2.0.1 - Datasets 2.13.1 - Tokenizers 0.13.3