karsar commited on
Commit
5f43358
1 Parent(s): 36e26b7

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,599 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: BAAI/bge-m3
3
+ language:
4
+ - hu
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ metrics:
8
+ - cosine_accuracy
9
+ - dot_accuracy
10
+ - manhattan_accuracy
11
+ - euclidean_accuracy
12
+ - max_accuracy
13
+ pipeline_tag: sentence-similarity
14
+ tags:
15
+ - sentence-transformers
16
+ - sentence-similarity
17
+ - feature-extraction
18
+ - generated_from_trainer
19
+ - dataset_size:200000
20
+ - loss:MultipleNegativesRankingLoss
21
+ widget:
22
+ - source_sentence: Emberek várnak a lámpánál kerékpárral.
23
+ sentences:
24
+ - Az emberek piros lámpánál haladnak.
25
+ - Az emberek a kerékpárjukon vannak.
26
+ - Egy fekete kutya úszik a vízben egy teniszlabdával a szájában
27
+ - source_sentence: A kutya a vízben van.
28
+ sentences:
29
+ - Két férfi takarítja a havat a tetőről, az egyik egy emelőben ül, a másik pedig
30
+ a tetőn.
31
+ - A macska a vízben van, és dühös.
32
+ - Egy kutya van a vízben, a szájában egy faág.
33
+ - source_sentence: A nő feketét visel.
34
+ sentences:
35
+ - Egy barna kutya fröcsköl, ahogy úszik a vízben.
36
+ - Egy tetoválással rendelkező nő, aki fekete tank tetején néz a földre.
37
+ - 'Egy kékbe öltözött nő intenzív arckifejezéssel üti a teniszlabdát. A képen:'
38
+ - source_sentence: Az emberek alszanak.
39
+ sentences:
40
+ - Három ember beszélget egy városi utcán.
41
+ - A nő fehéret visel.
42
+ - Egy apa és a fia ölelgeti alvás közben.
43
+ - source_sentence: Az emberek alszanak.
44
+ sentences:
45
+ - Egy feketébe öltözött nő cigarettát és bevásárlótáskát tart a kezében, miközben
46
+ egy idősebb nő átmegy az utcán.
47
+ - Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy
48
+ sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős
49
+ elmosódás tesz kivehetetlenné.
50
+ - Egy apa és a fia ölelgeti alvás közben.
51
+ model-index:
52
+ - name: gte_hun
53
+ results:
54
+ - task:
55
+ type: triplet
56
+ name: Triplet
57
+ dataset:
58
+ name: all nli dev
59
+ type: all-nli-dev
60
+ metrics:
61
+ - type: cosine_accuracy
62
+ value: 0.979
63
+ name: Cosine Accuracy
64
+ - type: dot_accuracy
65
+ value: 0.021
66
+ name: Dot Accuracy
67
+ - type: manhattan_accuracy
68
+ value: 0.9804
69
+ name: Manhattan Accuracy
70
+ - type: euclidean_accuracy
71
+ value: 0.979
72
+ name: Euclidean Accuracy
73
+ - type: max_accuracy
74
+ value: 0.9804
75
+ name: Max Accuracy
76
+ - task:
77
+ type: triplet
78
+ name: Triplet
79
+ dataset:
80
+ name: all nli test
81
+ type: all-nli-test
82
+ metrics:
83
+ - type: cosine_accuracy
84
+ value: 0.979
85
+ name: Cosine Accuracy
86
+ - type: dot_accuracy
87
+ value: 0.021
88
+ name: Dot Accuracy
89
+ - type: manhattan_accuracy
90
+ value: 0.9804
91
+ name: Manhattan Accuracy
92
+ - type: euclidean_accuracy
93
+ value: 0.979
94
+ name: Euclidean Accuracy
95
+ - type: max_accuracy
96
+ value: 0.9804
97
+ name: Max Accuracy
98
+ ---
99
+
100
+ # gte_hun
101
+
102
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) on the train dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
103
+
104
+ ## Model Details
105
+
106
+ ### Model Description
107
+ - **Model Type:** Sentence Transformer
108
+ - **Base model:** [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) <!-- at revision 5617a9f61b028005a4858fdac845db406aefb181 -->
109
+ - **Maximum Sequence Length:** 8192 tokens
110
+ - **Output Dimensionality:** 1024 tokens
111
+ - **Similarity Function:** Cosine Similarity
112
+ - **Training Dataset:**
113
+ - train
114
+ - **Language:** hu
115
+ - **License:** apache-2.0
116
+
117
+ ### Model Sources
118
+
119
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
120
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
121
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
122
+
123
+ ### Full Model Architecture
124
+
125
+ ```
126
+ SentenceTransformer(
127
+ (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
128
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
129
+ (2): Normalize()
130
+ )
131
+ ```
132
+
133
+ ## Usage
134
+
135
+ ### Direct Usage (Sentence Transformers)
136
+
137
+ First install the Sentence Transformers library:
138
+
139
+ ```bash
140
+ pip install -U sentence-transformers
141
+ ```
142
+
143
+ Then you can load this model and run inference.
144
+ ```python
145
+ from sentence_transformers import SentenceTransformer
146
+
147
+ # Download from the 🤗 Hub
148
+ model = SentenceTransformer("karsar/bge-m3-hu")
149
+ # Run inference
150
+ sentences = [
151
+ 'Az emberek alszanak.',
152
+ 'Egy apa és a fia ölelgeti alvás közben.',
153
+ 'Egy csoport ember ül egy nyitott, térszerű területen, mögötte nagy bokrok és egy sor viktoriánus stílusú épület, melyek közül sokat a kép jobb oldalán lévő erős elmosódás tesz kivehetetlenné.',
154
+ ]
155
+ embeddings = model.encode(sentences)
156
+ print(embeddings.shape)
157
+ # [3, 1024]
158
+
159
+ # Get the similarity scores for the embeddings
160
+ similarities = model.similarity(embeddings, embeddings)
161
+ print(similarities.shape)
162
+ # [3, 3]
163
+ ```
164
+
165
+ <!--
166
+ ### Direct Usage (Transformers)
167
+
168
+ <details><summary>Click to see the direct usage in Transformers</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Downstream Usage (Sentence Transformers)
175
+
176
+ You can finetune this model on your own dataset.
177
+
178
+ <details><summary>Click to expand</summary>
179
+
180
+ </details>
181
+ -->
182
+
183
+ <!--
184
+ ### Out-of-Scope Use
185
+
186
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
187
+ -->
188
+
189
+ ## Evaluation
190
+
191
+ ### Metrics
192
+
193
+ #### Triplet
194
+ * Dataset: `all-nli-dev`
195
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
196
+
197
+ | Metric | Value |
198
+ |:-------------------|:-----------|
199
+ | cosine_accuracy | 0.979 |
200
+ | dot_accuracy | 0.021 |
201
+ | manhattan_accuracy | 0.9804 |
202
+ | euclidean_accuracy | 0.979 |
203
+ | **max_accuracy** | **0.9804** |
204
+
205
+ #### Triplet
206
+ * Dataset: `all-nli-test`
207
+ * Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
208
+
209
+ | Metric | Value |
210
+ |:-------------------|:-----------|
211
+ | cosine_accuracy | 0.979 |
212
+ | dot_accuracy | 0.021 |
213
+ | manhattan_accuracy | 0.9804 |
214
+ | euclidean_accuracy | 0.979 |
215
+ | **max_accuracy** | **0.9804** |
216
+
217
+ <!--
218
+ ## Bias, Risks and Limitations
219
+
220
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
221
+ -->
222
+
223
+ <!--
224
+ ### Recommendations
225
+
226
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
227
+ -->
228
+
229
+ ## Training Details
230
+
231
+ ### Training Dataset
232
+
233
+ #### train
234
+
235
+ * Dataset: train
236
+ * Size: 200,000 training samples
237
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
238
+ * Approximate statistics based on the first 1000 samples:
239
+ | | anchor | positive | negative |
240
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
241
+ | type | string | string | string |
242
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> |
243
+ * Samples:
244
+ | anchor | positive | negative |
245
+ |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------|
246
+ | <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> |
247
+ | <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> |
248
+ | <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> |
249
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
250
+ ```json
251
+ {
252
+ "scale": 20.0,
253
+ "similarity_fct": "cos_sim"
254
+ }
255
+ ```
256
+
257
+ ### Evaluation Dataset
258
+
259
+ #### train
260
+
261
+ * Dataset: train
262
+ * Size: 5,000 evaluation samples
263
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
264
+ * Approximate statistics based on the first 1000 samples:
265
+ | | anchor | positive | negative |
266
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
267
+ | type | string | string | string |
268
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.73 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.24 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.07 tokens</li><li>max: 53 tokens</li></ul> |
269
+ * Samples:
270
+ | anchor | positive | negative |
271
+ |:---------------------------------------------------------------------------|:----------------------------------------------|:---------------------------------------------------------------|
272
+ | <code>Egy lóháton ülő ember átugrik egy lerombolt repülőgép felett.</code> | <code>Egy ember a szabadban, lóháton.</code> | <code>Egy ember egy étteremben van, és omlettet rendel.</code> |
273
+ | <code>Gyerekek mosolyogva és integetett a kamera</code> | <code>Gyermekek vannak jelen</code> | <code>A gyerekek homlokot rántanak</code> |
274
+ | <code>Egy fiú ugrál a gördeszkát a közepén egy piros híd.</code> | <code>A fiú gördeszkás trükköt csinál.</code> | <code>A fiú korcsolyázik a járdán.</code> |
275
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
276
+ ```json
277
+ {
278
+ "scale": 20.0,
279
+ "similarity_fct": "cos_sim"
280
+ }
281
+ ```
282
+
283
+ ### Training Hyperparameters
284
+ #### Non-Default Hyperparameters
285
+
286
+ - `eval_strategy`: steps
287
+ - `per_device_train_batch_size`: 16
288
+ - `per_device_eval_batch_size`: 16
289
+ - `num_train_epochs`: 1
290
+ - `warmup_ratio`: 0.1
291
+ - `bf16`: True
292
+ - `batch_sampler`: no_duplicates
293
+
294
+ #### All Hyperparameters
295
+ <details><summary>Click to expand</summary>
296
+
297
+ - `overwrite_output_dir`: False
298
+ - `do_predict`: False
299
+ - `eval_strategy`: steps
300
+ - `prediction_loss_only`: True
301
+ - `per_device_train_batch_size`: 16
302
+ - `per_device_eval_batch_size`: 16
303
+ - `per_gpu_train_batch_size`: None
304
+ - `per_gpu_eval_batch_size`: None
305
+ - `gradient_accumulation_steps`: 1
306
+ - `eval_accumulation_steps`: None
307
+ - `torch_empty_cache_steps`: None
308
+ - `learning_rate`: 5e-05
309
+ - `weight_decay`: 0.0
310
+ - `adam_beta1`: 0.9
311
+ - `adam_beta2`: 0.999
312
+ - `adam_epsilon`: 1e-08
313
+ - `max_grad_norm`: 1.0
314
+ - `num_train_epochs`: 1
315
+ - `max_steps`: -1
316
+ - `lr_scheduler_type`: linear
317
+ - `lr_scheduler_kwargs`: {}
318
+ - `warmup_ratio`: 0.1
319
+ - `warmup_steps`: 0
320
+ - `log_level`: passive
321
+ - `log_level_replica`: warning
322
+ - `log_on_each_node`: True
323
+ - `logging_nan_inf_filter`: True
324
+ - `save_safetensors`: True
325
+ - `save_on_each_node`: False
326
+ - `save_only_model`: False
327
+ - `restore_callback_states_from_checkpoint`: False
328
+ - `no_cuda`: False
329
+ - `use_cpu`: False
330
+ - `use_mps_device`: False
331
+ - `seed`: 42
332
+ - `data_seed`: None
333
+ - `jit_mode_eval`: False
334
+ - `use_ipex`: False
335
+ - `bf16`: True
336
+ - `fp16`: False
337
+ - `fp16_opt_level`: O1
338
+ - `half_precision_backend`: auto
339
+ - `bf16_full_eval`: False
340
+ - `fp16_full_eval`: False
341
+ - `tf32`: None
342
+ - `local_rank`: 0
343
+ - `ddp_backend`: None
344
+ - `tpu_num_cores`: None
345
+ - `tpu_metrics_debug`: False
346
+ - `debug`: []
347
+ - `dataloader_drop_last`: False
348
+ - `dataloader_num_workers`: 0
349
+ - `dataloader_prefetch_factor`: None
350
+ - `past_index`: -1
351
+ - `disable_tqdm`: False
352
+ - `remove_unused_columns`: True
353
+ - `label_names`: None
354
+ - `load_best_model_at_end`: False
355
+ - `ignore_data_skip`: False
356
+ - `fsdp`: []
357
+ - `fsdp_min_num_params`: 0
358
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
359
+ - `fsdp_transformer_layer_cls_to_wrap`: None
360
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
361
+ - `deepspeed`: None
362
+ - `label_smoothing_factor`: 0.0
363
+ - `optim`: adamw_torch
364
+ - `optim_args`: None
365
+ - `adafactor`: False
366
+ - `group_by_length`: False
367
+ - `length_column_name`: length
368
+ - `ddp_find_unused_parameters`: None
369
+ - `ddp_bucket_cap_mb`: None
370
+ - `ddp_broadcast_buffers`: False
371
+ - `dataloader_pin_memory`: True
372
+ - `dataloader_persistent_workers`: False
373
+ - `skip_memory_metrics`: True
374
+ - `use_legacy_prediction_loop`: False
375
+ - `push_to_hub`: False
376
+ - `resume_from_checkpoint`: None
377
+ - `hub_model_id`: None
378
+ - `hub_strategy`: every_save
379
+ - `hub_private_repo`: False
380
+ - `hub_always_push`: False
381
+ - `gradient_checkpointing`: False
382
+ - `gradient_checkpointing_kwargs`: None
383
+ - `include_inputs_for_metrics`: False
384
+ - `eval_do_concat_batches`: True
385
+ - `fp16_backend`: auto
386
+ - `push_to_hub_model_id`: None
387
+ - `push_to_hub_organization`: None
388
+ - `mp_parameters`:
389
+ - `auto_find_batch_size`: False
390
+ - `full_determinism`: False
391
+ - `torchdynamo`: None
392
+ - `ray_scope`: last
393
+ - `ddp_timeout`: 1800
394
+ - `torch_compile`: False
395
+ - `torch_compile_backend`: None
396
+ - `torch_compile_mode`: None
397
+ - `dispatch_batches`: None
398
+ - `split_batches`: None
399
+ - `include_tokens_per_second`: False
400
+ - `include_num_input_tokens_seen`: False
401
+ - `neftune_noise_alpha`: None
402
+ - `optim_target_modules`: None
403
+ - `batch_eval_metrics`: False
404
+ - `eval_on_start`: False
405
+ - `eval_use_gather_object`: False
406
+ - `batch_sampler`: no_duplicates
407
+ - `multi_dataset_batch_sampler`: proportional
408
+
409
+ </details>
410
+
411
+ ### Training Logs
412
+ <details><summary>Click to expand</summary>
413
+
414
+ | Epoch | Step | Training Loss | train loss | all-nli-dev_max_accuracy | all-nli-test_max_accuracy |
415
+ |:-----:|:-----:|:-------------:|:----------:|:------------------------:|:-------------------------:|
416
+ | 0 | 0 | - | - | 0.7176 | - |
417
+ | 0.008 | 100 | 1.0753 | - | - | - |
418
+ | 0.016 | 200 | 0.7611 | - | - | - |
419
+ | 0.024 | 300 | 1.0113 | - | - | - |
420
+ | 0.032 | 400 | 0.6224 | - | - | - |
421
+ | 0.04 | 500 | 0.8465 | 0.6159 | 0.8938 | - |
422
+ | 0.048 | 600 | 0.7761 | - | - | - |
423
+ | 0.056 | 700 | 0.8738 | - | - | - |
424
+ | 0.064 | 800 | 0.9393 | - | - | - |
425
+ | 0.072 | 900 | 0.9743 | - | - | - |
426
+ | 0.08 | 1000 | 0.8445 | 0.4556 | 0.8916 | - |
427
+ | 0.088 | 1100 | 0.7237 | - | - | - |
428
+ | 0.096 | 1200 | 0.8064 | - | - | - |
429
+ | 0.104 | 1300 | 0.607 | - | - | - |
430
+ | 0.112 | 1400 | 0.7632 | - | - | - |
431
+ | 0.12 | 1500 | 0.7477 | 1.6880 | 0.6748 | - |
432
+ | 0.128 | 1600 | 1.018 | - | - | - |
433
+ | 0.136 | 1700 | 0.9046 | - | - | - |
434
+ | 0.144 | 1800 | 0.728 | - | - | - |
435
+ | 0.152 | 1900 | 0.7219 | - | - | - |
436
+ | 0.16 | 2000 | 0.632 | 0.6459 | 0.8622 | - |
437
+ | 0.168 | 2100 | 0.6067 | - | - | - |
438
+ | 0.176 | 2200 | 0.7267 | - | - | - |
439
+ | 0.184 | 2300 | 0.781 | - | - | - |
440
+ | 0.192 | 2400 | 0.662 | - | - | - |
441
+ | 0.2 | 2500 | 0.6192 | 1.0124 | 0.8328 | - |
442
+ | 0.208 | 2600 | 0.7943 | - | - | - |
443
+ | 0.216 | 2700 | 0.8762 | - | - | - |
444
+ | 0.224 | 2800 | 0.7913 | - | - | - |
445
+ | 0.232 | 2900 | 0.8049 | - | - | - |
446
+ | 0.24 | 3000 | 0.858 | 0.6378 | 0.8046 | - |
447
+ | 0.248 | 3100 | 0.679 | - | - | - |
448
+ | 0.256 | 3200 | 0.7213 | - | - | - |
449
+ | 0.264 | 3300 | 0.6028 | - | - | - |
450
+ | 0.272 | 3400 | 0.5778 | - | - | - |
451
+ | 0.28 | 3500 | 0.5434 | 0.6784 | 0.8496 | - |
452
+ | 0.288 | 3600 | 0.6726 | - | - | - |
453
+ | 0.296 | 3700 | 0.7347 | - | - | - |
454
+ | 0.304 | 3800 | 0.8413 | - | - | - |
455
+ | 0.312 | 3900 | 0.7993 | - | - | - |
456
+ | 0.32 | 4000 | 0.8899 | 0.7732 | 0.8092 | - |
457
+ | 0.328 | 4100 | 1.1505 | - | - | - |
458
+ | 0.336 | 4200 | 0.8871 | - | - | - |
459
+ | 0.344 | 4300 | 0.8423 | - | - | - |
460
+ | 0.352 | 4400 | 0.8288 | - | - | - |
461
+ | 0.36 | 4500 | 0.6728 | 0.6341 | 0.8436 | - |
462
+ | 0.368 | 4600 | 0.7534 | - | - | - |
463
+ | 0.376 | 4700 | 0.8276 | - | - | - |
464
+ | 0.384 | 4800 | 0.7677 | - | - | - |
465
+ | 0.392 | 4900 | 0.588 | - | - | - |
466
+ | 0.4 | 5000 | 0.7742 | 0.4389 | 0.8808 | - |
467
+ | 0.408 | 5100 | 0.6782 | - | - | - |
468
+ | 0.416 | 5200 | 0.6688 | - | - | - |
469
+ | 0.424 | 5300 | 0.5579 | - | - | - |
470
+ | 0.432 | 5400 | 0.6891 | - | - | - |
471
+ | 0.44 | 5500 | 0.5764 | 0.4192 | 0.902 | - |
472
+ | 0.448 | 5600 | 0.6152 | - | - | - |
473
+ | 0.456 | 5700 | 0.6864 | - | - | - |
474
+ | 0.464 | 5800 | 0.6429 | - | - | - |
475
+ | 0.472 | 5900 | 0.9379 | - | - | - |
476
+ | 0.48 | 6000 | 0.7607 | 0.4744 | 0.8736 | - |
477
+ | 0.488 | 6100 | 0.819 | - | - | - |
478
+ | 0.496 | 6200 | 0.6316 | - | - | - |
479
+ | 0.504 | 6300 | 0.8175 | - | - | - |
480
+ | 0.512 | 6400 | 0.8485 | - | - | - |
481
+ | 0.52 | 6500 | 0.5374 | 0.4860 | 0.916 | - |
482
+ | 0.528 | 6600 | 0.781 | - | - | - |
483
+ | 0.536 | 6700 | 0.7722 | - | - | - |
484
+ | 0.544 | 6800 | 0.7281 | - | - | - |
485
+ | 0.552 | 6900 | 0.8453 | - | - | - |
486
+ | 0.56 | 7000 | 0.8541 | 0.2612 | 0.9322 | - |
487
+ | 0.568 | 7100 | 0.9698 | - | - | - |
488
+ | 0.576 | 7200 | 0.7184 | - | - | - |
489
+ | 0.584 | 7300 | 0.699 | - | - | - |
490
+ | 0.592 | 7400 | 0.5574 | - | - | - |
491
+ | 0.6 | 7500 | 0.5374 | 0.1939 | 0.9472 | - |
492
+ | 0.608 | 7600 | 0.6485 | - | - | - |
493
+ | 0.616 | 7700 | 0.5177 | - | - | - |
494
+ | 0.624 | 7800 | 0.814 | - | - | - |
495
+ | 0.632 | 7900 | 0.6442 | - | - | - |
496
+ | 0.64 | 8000 | 0.5301 | 0.1192 | 0.9616 | - |
497
+ | 0.648 | 8100 | 0.4948 | - | - | - |
498
+ | 0.656 | 8200 | 0.426 | - | - | - |
499
+ | 0.664 | 8300 | 0.4781 | - | - | - |
500
+ | 0.672 | 8400 | 0.4188 | - | - | - |
501
+ | 0.68 | 8500 | 0.5695 | 0.1523 | 0.9492 | - |
502
+ | 0.688 | 8600 | 0.3895 | - | - | - |
503
+ | 0.696 | 8700 | 0.5041 | - | - | - |
504
+ | 0.704 | 8800 | 0.7599 | - | - | - |
505
+ | 0.712 | 8900 | 0.5893 | - | - | - |
506
+ | 0.72 | 9000 | 0.6678 | 0.1363 | 0.9588 | - |
507
+ | 0.728 | 9100 | 0.5917 | - | - | - |
508
+ | 0.736 | 9200 | 0.6201 | - | - | - |
509
+ | 0.744 | 9300 | 0.5072 | - | - | - |
510
+ | 0.752 | 9400 | 0.4233 | - | - | - |
511
+ | 0.76 | 9500 | 0.396 | 0.2490 | 0.937 | - |
512
+ | 0.768 | 9600 | 0.3699 | - | - | - |
513
+ | 0.776 | 9700 | 0.3734 | - | - | - |
514
+ | 0.784 | 9800 | 0.4145 | - | - | - |
515
+ | 0.792 | 9900 | 0.4422 | - | - | - |
516
+ | 0.8 | 10000 | 0.4427 | 0.1394 | 0.9634 | - |
517
+ | 0.808 | 10100 | 0.678 | - | - | - |
518
+ | 0.816 | 10200 | 0.6771 | - | - | - |
519
+ | 0.824 | 10300 | 0.8249 | - | - | - |
520
+ | 0.832 | 10400 | 0.5003 | - | - | - |
521
+ | 0.84 | 10500 | 0.5586 | 0.1006 | 0.9726 | - |
522
+ | 0.848 | 10600 | 0.4649 | - | - | - |
523
+ | 0.856 | 10700 | 0.5322 | - | - | - |
524
+ | 0.864 | 10800 | 0.4837 | - | - | - |
525
+ | 0.872 | 10900 | 0.5717 | - | - | - |
526
+ | 0.88 | 11000 | 0.4403 | 0.1009 | 0.9688 | - |
527
+ | 0.888 | 11100 | 0.5044 | - | - | - |
528
+ | 0.896 | 11200 | 0.4771 | - | - | - |
529
+ | 0.904 | 11300 | 0.4426 | - | - | - |
530
+ | 0.912 | 11400 | 0.3705 | - | - | - |
531
+ | 0.92 | 11500 | 0.4445 | 0.0992 | 0.978 | - |
532
+ | 0.928 | 11600 | 0.3707 | - | - | - |
533
+ | 0.936 | 11700 | 0.4322 | - | - | - |
534
+ | 0.944 | 11800 | 0.4619 | - | - | - |
535
+ | 0.952 | 11900 | 0.4772 | - | - | - |
536
+ | 0.96 | 12000 | 0.5756 | 0.0950 | 0.9804 | - |
537
+ | 0.968 | 12100 | 0.5649 | - | - | - |
538
+ | 0.976 | 12200 | 0.5037 | - | - | - |
539
+ | 0.984 | 12300 | 0.0317 | - | - | - |
540
+ | 0.992 | 12400 | 0.0001 | - | - | - |
541
+ | 1.0 | 12500 | 0.0001 | 0.0948 | 0.9804 | 0.9804 |
542
+
543
+ </details>
544
+
545
+ ### Framework Versions
546
+ - Python: 3.11.8
547
+ - Sentence Transformers: 3.1.1
548
+ - Transformers: 4.44.0
549
+ - PyTorch: 2.3.0.post101
550
+ - Accelerate: 0.33.0
551
+ - Datasets: 2.18.0
552
+ - Tokenizers: 0.19.0
553
+
554
+ ## Citation
555
+
556
+ ### BibTeX
557
+
558
+ #### Sentence Transformers
559
+ ```bibtex
560
+ @inproceedings{reimers-2019-sentence-bert,
561
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
562
+ author = "Reimers, Nils and Gurevych, Iryna",
563
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
564
+ month = "11",
565
+ year = "2019",
566
+ publisher = "Association for Computational Linguistics",
567
+ url = "https://arxiv.org/abs/1908.10084",
568
+ }
569
+ ```
570
+
571
+ #### MultipleNegativesRankingLoss
572
+ ```bibtex
573
+ @misc{henderson2017efficient,
574
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
575
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
576
+ year={2017},
577
+ eprint={1705.00652},
578
+ archivePrefix={arXiv},
579
+ primaryClass={cs.CL}
580
+ }
581
+ ```
582
+
583
+ <!--
584
+ ## Glossary
585
+
586
+ *Clearly define terms in order to be accessible across audiences.*
587
+ -->
588
+
589
+ <!--
590
+ ## Model Card Authors
591
+
592
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
593
+ -->
594
+
595
+ <!--
596
+ ## Model Card Contact
597
+
598
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
599
+ -->
config.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-m3",
3
+ "architectures": [
4
+ "XLMRobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 4096,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 8194,
17
+ "model_type": "xlm-roberta",
18
+ "num_attention_heads": 16,
19
+ "num_hidden_layers": 24,
20
+ "output_past": true,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.44.0",
25
+ "type_vocab_size": 1,
26
+ "use_cache": true,
27
+ "vocab_size": 250002
28
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.0",
5
+ "pytorch": "2.3.0.post101"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f1ec2fa5ecdd364c4cbe91264349b8a927c331ad9a53cc15fa2cf929da58521
3
+ size 2271064456
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4f7e21bec3fb0044ca0bb2d50eb5d4d8c596273c422baef84466d2c73748b9c
3
+ size 17083053
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 8192,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }