--- license: mit base_model: FacebookAI/roberta-base tags: - generated_from_keras_callback model-index: - name: kasrahabib/roberta-base-finetuned-iso29148-promise-km-labels-nf-subclasses-cls results: [] --- # kasrahabib/roberta-base-finetuned-iso29148-promise-km-labels-nf-subclasses-cls This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 0.0124 - Validation Loss: 0.1623 - Epoch: 29 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 1770, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 2.1848 | 1.7407 | 0 | | 1.2611 | 0.8464 | 1 | | 0.5377 | 0.4928 | 2 | | 0.2843 | 0.2790 | 3 | | 0.1531 | 0.3657 | 4 | | 0.1186 | 0.1997 | 5 | | 0.0646 | 0.1742 | 6 | | 0.0498 | 0.1731 | 7 | | 0.0417 | 0.1709 | 8 | | 0.0351 | 0.1689 | 9 | | 0.0309 | 0.1659 | 10 | | 0.0270 | 0.1674 | 11 | | 0.0255 | 0.1687 | 12 | | 0.0229 | 0.1665 | 13 | | 0.0210 | 0.1673 | 14 | | 0.0193 | 0.1677 | 15 | | 0.0185 | 0.1664 | 16 | | 0.0168 | 0.1658 | 17 | | 0.0162 | 0.1649 | 18 | | 0.0156 | 0.1670 | 19 | | 0.0150 | 0.1678 | 20 | | 0.0144 | 0.1656 | 21 | | 0.0141 | 0.1653 | 22 | | 0.0138 | 0.1662 | 23 | | 0.0132 | 0.1668 | 24 | | 0.0127 | 0.1629 | 25 | | 0.0125 | 0.1614 | 26 | | 0.0123 | 0.1619 | 27 | | 0.0122 | 0.1624 | 28 | | 0.0124 | 0.1623 | 29 | ### Framework versions - Transformers 4.42.3 - TensorFlow 2.15.0 - Datasets 2.19.1 - Tokenizers 0.19.1