tiny-random-flux-ov / vae_encoder /openvino_model.xml
katuni4ka's picture
Upload 25 files
929c01f verified
raw
history blame
58.2 kB
<?xml version="1.0"?>
<net name="Model6" version="11">
<layers>
<layer id="0" name="sample" type="Parameter" version="opset1">
<data shape="?,3,?,?" element_type="f32" />
<output>
<port id="0" precision="FP32" names="sample">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="1" name="self.encoder.conv_in.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 3, 3, 3" offset="0" size="432" />
<output>
<port id="0" precision="FP32" names="self.encoder.conv_in.weight">
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="2" name="__module.encoder.conv_in/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>3</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="3" name="__module.encoder.conv_in/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="432" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="4" name="__module.encoder.conv_in/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="37,input.1">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="5" name="self.encoder.down_blocks.0.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm1.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="6" name="self.encoder.down_blocks.0.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm1.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="7" name="__module.encoder.down_blocks.0.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="47,input.3">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="8" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="48">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="9" name="self.encoder.down_blocks.0.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4, 3, 3" offset="480" size="576" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.conv1.weight">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="10" name="__module.encoder.down_blocks.0.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="11" name="__module.encoder.down_blocks.0.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="1056" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="12" name="__module.encoder.down_blocks.0.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="55,input.5">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="13" name="self.encoder.down_blocks.0.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm2.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="14" name="self.encoder.down_blocks.0.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.norm2.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="15" name="__module.encoder.down_blocks.0.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="58,input.7">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="16" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_1" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="59,input.9">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="17" name="self.encoder.down_blocks.0.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4, 3, 3" offset="1072" size="576" />
<output>
<port id="0" precision="FP32" names="self.encoder.down_blocks.0.resnets.0.conv2.weight">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="18" name="__module.encoder.down_blocks.0.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="19" name="__module.encoder.down_blocks.0.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="1648" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="20" name="__module.encoder.down_blocks.0.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="67,hidden_states.1">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="21" name="__module.encoder.down_blocks.0.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="68,69,input.11">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="22" name="self.encoder.mid_block.resnets.0.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm1.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="23" name="self.encoder.mid_block.resnets.0.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm1.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="24" name="__module.encoder.mid_block.resnets.0.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="83,input.13">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="25" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_2" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="84">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="26" name="self.encoder.mid_block.resnets.0.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4, 3, 3" offset="1664" size="576" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.conv1.weight">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="27" name="__module.encoder.mid_block.resnets.0.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="28" name="__module.encoder.mid_block.resnets.0.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="2240" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="29" name="__module.encoder.mid_block.resnets.0.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="91,input.15">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="30" name="self.encoder.mid_block.resnets.0.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm2.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="31" name="self.encoder.mid_block.resnets.0.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.norm2.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="32" name="__module.encoder.mid_block.resnets.0.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="94,input.17">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="33" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_3" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="95,input.19">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="34" name="self.encoder.mid_block.resnets.0.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4, 3, 3" offset="2256" size="576" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.0.conv2.weight">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="35" name="__module.encoder.mid_block.resnets.0.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="36" name="__module.encoder.mid_block.resnets.0.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="2832" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="37" name="__module.encoder.mid_block.resnets.0.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="103,hidden_states.3">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="38" name="__module.encoder.mid_block.resnets.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="104,105,hidden_states.5">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="39" name="Constant_24885" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="2848" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="40" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="121">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="41" name="__module.encoder.mid_block.attentions.0/aten::transpose/Constant" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="2872" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="42" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="122,hidden_states.7">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="43" name="__module.encoder.mid_block.attentions.0/aten::transpose/Constant_1" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="2872" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="44" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_1" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="124,input.21">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="45" name="self.encoder.mid_block.attentions.0.group_norm.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.group_norm.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="46" name="self.encoder.mid_block.attentions.0.group_norm.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.group_norm.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="47" name="__module.encoder.mid_block.attentions.0.group_norm/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="127">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="48" name="self.encoder.mid_block.attentions.0.to_q.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4" offset="2884" size="64" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.to_q.weight">
<dim>4</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="49" name="__module.encoder.mid_block.attentions.0.to_q/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="50" name="Constant_24770" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 4" offset="2948" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="51" name="__module.encoder.mid_block.attentions.0.to_q/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="131,query">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="52" name="Constant_24886" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="2964" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="53" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape_1" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="145">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="54" name="Constant_24717" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="2996" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="55" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="146">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="56" name="self.encoder.mid_block.attentions.0.to_k.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4" offset="3028" size="64" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.to_k.weight">
<dim>4</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="57" name="__module.encoder.mid_block.attentions.0.to_k/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="58" name="Constant_24771" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 4" offset="3092" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="59" name="__module.encoder.mid_block.attentions.0.to_k/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="134,key">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="60" name="Constant_24887" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="2964" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="61" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape_2" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="148">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="62" name="Constant_24721" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="2996" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="63" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_4" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="149">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="64" name="self.encoder.mid_block.attentions.0.to_v.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4" offset="3108" size="64" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.to_v.weight">
<dim>4</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="65" name="__module.encoder.mid_block.attentions.0.to_v/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="true" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="66" name="Constant_24772" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 4" offset="3172" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="67" name="__module.encoder.mid_block.attentions.0.to_v/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="137,value">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="68" name="Constant_24888" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="2964" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="69" name="__module.encoder.mid_block.attentions.0/aten::view/Reshape_3" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="151">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="70" name="Constant_24725" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="2996" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="71" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_5" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="152">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="72" name="__module.encoder.mid_block.attentions.0/aten::scaled_dot_product_attention/ScaledDotProductAttention" type="ScaledDotProductAttention" version="opset13">
<data causal="false" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="153,hidden_states.9">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="73" name="Constant_24727" type="Const" version="opset1">
<data element_type="i64" shape="4" offset="3188" size="32" />
<output>
<port id="0" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="74" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_6" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="154">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="75" name="Constant_24889" type="Const" version="opset1">
<data element_type="i64" shape="3" offset="3220" size="24" />
<output>
<port id="0" precision="I64">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="76" name="__module.encoder.mid_block.attentions.0/aten::reshape/Reshape" type="Reshape" version="opset1">
<data special_zero="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I64">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="158,159,hidden_states.11">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="77" name="self.encoder.mid_block.attentions.0.to_out.0.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4" offset="3244" size="64" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.attentions.0.to_out.0.weight">
<dim>4</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="78" name="__module.encoder.mid_block.attentions.0.to_out.0/aten::linear/MatMul" type="MatMul" version="opset1">
<data transpose_a="false" transpose_b="true" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="79" name="Constant_24773" type="Const" version="opset1">
<data element_type="f32" shape="1, 1, 4" offset="3308" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="80" name="__module.encoder.mid_block.attentions.0.to_out.0/aten::linear/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="162,input.23">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
</output>
</layer>
<layer id="81" name="__module.encoder.mid_block.attentions.0/aten::transpose/Constant_7" type="Const" version="opset1">
<data element_type="i32" shape="3" offset="2872" size="12" />
<output>
<port id="0" precision="I32">
<dim>3</dim>
</port>
</output>
</layer>
<layer id="82" name="__module.encoder.mid_block.attentions.0/aten::transpose/Transpose_7" type="Transpose" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>-1</dim>
<dim>4</dim>
</port>
<port id="1" precision="I32">
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="164">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="83" name="__module.encoder.mid_block.attentions.0/aten::size/ShapeOf" type="ShapeOf" version="opset3">
<data output_type="i64" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="84" name="__module.encoder.mid_block.attentions.0/aten::reshape/Reshape_1" type="Reshape" version="opset1">
<data special_zero="false" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
</port>
<port id="1" precision="I64">
<dim>4</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="166,hidden_states.15">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="85" name="__module.encoder.mid_block.attentions.0/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="167,168,hidden_states.17,input.25">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="86" name="self.encoder.mid_block.resnets.1.norm1.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm1.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="87" name="self.encoder.mid_block.resnets.1.norm1.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm1.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="88" name="__module.encoder.mid_block.resnets.1.norm1/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="176,input.27">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="89" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_4" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="177">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="90" name="self.encoder.mid_block.resnets.1.conv1.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4, 3, 3" offset="3324" size="576" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.conv1.weight">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="91" name="__module.encoder.mid_block.resnets.1.conv1/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="92" name="__module.encoder.mid_block.resnets.1.conv1/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="3900" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="93" name="__module.encoder.mid_block.resnets.1.conv1/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="184,input.29">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="94" name="self.encoder.mid_block.resnets.1.norm2.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm2.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="95" name="self.encoder.mid_block.resnets.1.norm2.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.norm2.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="96" name="__module.encoder.mid_block.resnets.1.norm2/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="187,input.31">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="97" name="__module.decoder.mid_block.resnets.1.nonlinearity/aten::silu/Swish_5" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="188,input.33">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="98" name="self.encoder.mid_block.resnets.1.conv2.weight" type="Const" version="opset1">
<data element_type="f32" shape="4, 4, 3, 3" offset="3916" size="576" />
<output>
<port id="0" precision="FP32" names="self.encoder.mid_block.resnets.1.conv2.weight">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="99" name="__module.encoder.mid_block.resnets.1.conv2/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="100" name="__module.encoder.mid_block.resnets.1.conv2/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 4, 1, 1" offset="4492" size="16" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="101" name="__module.encoder.mid_block.resnets.1.conv2/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>4</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="196,hidden_states">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="102" name="__module.encoder.mid_block.resnets.1/aten::add/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="197,198,input.35">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="103" name="self.encoder.conv_norm_out.weight" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="448" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.conv_norm_out.weight">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="104" name="self.encoder.conv_norm_out.bias" type="Const" version="opset1">
<data element_type="f32" shape="4" offset="464" size="16" />
<output>
<port id="0" precision="FP32" names="self.encoder.conv_norm_out.bias">
<dim>4</dim>
</port>
</output>
</layer>
<layer id="105" name="__module.encoder.conv_norm_out/aten::group_norm/GroupNormalization" type="GroupNormalization" version="opset12">
<data num_groups="1" epsilon="9.9999999747524271e-07" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>4</dim>
</port>
<port id="2" precision="FP32">
<dim>4</dim>
</port>
</input>
<output>
<port id="3" precision="FP32" names="201,input">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="106" name="__module.encoder.conv_act/aten::silu/Swish" type="Swish" version="opset4">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
<output>
<port id="1" precision="FP32" names="202">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="107" name="self.encoder.conv_out.weight" type="Const" version="opset1">
<data element_type="f32" shape="2, 4, 3, 3" offset="4508" size="288" />
<output>
<port id="0" precision="FP32" names="self.encoder.conv_out.weight">
<dim>2</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</output>
</layer>
<layer id="108" name="__module.encoder.conv_out/aten::_convolution/Convolution" type="Convolution" version="opset1">
<data strides="1, 1" dilations="1, 1" pads_begin="1, 1" pads_end="1, 1" auto_pad="explicit" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>4</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>2</dim>
<dim>4</dim>
<dim>3</dim>
<dim>3</dim>
</port>
</input>
<output>
<port id="2" precision="FP32">
<dim>-1</dim>
<dim>2</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="109" name="__module.encoder.conv_out/aten::_convolution/Reshape" type="Const" version="opset1">
<data element_type="f32" shape="1, 2, 1, 1" offset="4796" size="8" />
<output>
<port id="0" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</output>
</layer>
<layer id="110" name="__module.encoder.conv_out/aten::_convolution/Add" type="Add" version="opset1">
<data auto_broadcast="numpy" />
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
<port id="1" precision="FP32">
<dim>1</dim>
<dim>2</dim>
<dim>1</dim>
<dim>1</dim>
</port>
</input>
<output>
<port id="2" precision="FP32" names="latent_parameters">
<dim>-1</dim>
<dim>2</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</output>
</layer>
<layer id="111" name="Result_22115" type="Result" version="opset1">
<input>
<port id="0" precision="FP32">
<dim>-1</dim>
<dim>2</dim>
<dim>-1</dim>
<dim>-1</dim>
</port>
</input>
</layer>
</layers>
<edges>
<edge from-layer="0" from-port="0" to-layer="2" to-port="0" />
<edge from-layer="1" from-port="0" to-layer="2" to-port="1" />
<edge from-layer="2" from-port="2" to-layer="4" to-port="0" />
<edge from-layer="3" from-port="0" to-layer="4" to-port="1" />
<edge from-layer="4" from-port="2" to-layer="21" to-port="0" />
<edge from-layer="4" from-port="2" to-layer="7" to-port="0" />
<edge from-layer="5" from-port="0" to-layer="7" to-port="1" />
<edge from-layer="6" from-port="0" to-layer="7" to-port="2" />
<edge from-layer="7" from-port="3" to-layer="8" to-port="0" />
<edge from-layer="8" from-port="1" to-layer="10" to-port="0" />
<edge from-layer="9" from-port="0" to-layer="10" to-port="1" />
<edge from-layer="10" from-port="2" to-layer="12" to-port="0" />
<edge from-layer="11" from-port="0" to-layer="12" to-port="1" />
<edge from-layer="12" from-port="2" to-layer="15" to-port="0" />
<edge from-layer="13" from-port="0" to-layer="15" to-port="1" />
<edge from-layer="14" from-port="0" to-layer="15" to-port="2" />
<edge from-layer="15" from-port="3" to-layer="16" to-port="0" />
<edge from-layer="16" from-port="1" to-layer="18" to-port="0" />
<edge from-layer="17" from-port="0" to-layer="18" to-port="1" />
<edge from-layer="18" from-port="2" to-layer="20" to-port="0" />
<edge from-layer="19" from-port="0" to-layer="20" to-port="1" />
<edge from-layer="20" from-port="2" to-layer="21" to-port="1" />
<edge from-layer="21" from-port="2" to-layer="24" to-port="0" />
<edge from-layer="21" from-port="2" to-layer="38" to-port="0" />
<edge from-layer="22" from-port="0" to-layer="24" to-port="1" />
<edge from-layer="23" from-port="0" to-layer="24" to-port="2" />
<edge from-layer="24" from-port="3" to-layer="25" to-port="0" />
<edge from-layer="25" from-port="1" to-layer="27" to-port="0" />
<edge from-layer="26" from-port="0" to-layer="27" to-port="1" />
<edge from-layer="27" from-port="2" to-layer="29" to-port="0" />
<edge from-layer="28" from-port="0" to-layer="29" to-port="1" />
<edge from-layer="29" from-port="2" to-layer="32" to-port="0" />
<edge from-layer="30" from-port="0" to-layer="32" to-port="1" />
<edge from-layer="31" from-port="0" to-layer="32" to-port="2" />
<edge from-layer="32" from-port="3" to-layer="33" to-port="0" />
<edge from-layer="33" from-port="1" to-layer="35" to-port="0" />
<edge from-layer="34" from-port="0" to-layer="35" to-port="1" />
<edge from-layer="35" from-port="2" to-layer="37" to-port="0" />
<edge from-layer="36" from-port="0" to-layer="37" to-port="1" />
<edge from-layer="37" from-port="2" to-layer="38" to-port="1" />
<edge from-layer="38" from-port="2" to-layer="40" to-port="0" />
<edge from-layer="38" from-port="2" to-layer="85" to-port="1" />
<edge from-layer="38" from-port="2" to-layer="83" to-port="0" />
<edge from-layer="39" from-port="0" to-layer="40" to-port="1" />
<edge from-layer="40" from-port="2" to-layer="42" to-port="0" />
<edge from-layer="41" from-port="0" to-layer="42" to-port="1" />
<edge from-layer="42" from-port="2" to-layer="44" to-port="0" />
<edge from-layer="43" from-port="0" to-layer="44" to-port="1" />
<edge from-layer="44" from-port="2" to-layer="47" to-port="0" />
<edge from-layer="45" from-port="0" to-layer="47" to-port="1" />
<edge from-layer="46" from-port="0" to-layer="47" to-port="2" />
<edge from-layer="47" from-port="3" to-layer="65" to-port="0" />
<edge from-layer="47" from-port="3" to-layer="57" to-port="0" />
<edge from-layer="47" from-port="3" to-layer="49" to-port="0" />
<edge from-layer="48" from-port="0" to-layer="49" to-port="1" />
<edge from-layer="49" from-port="2" to-layer="51" to-port="0" />
<edge from-layer="50" from-port="0" to-layer="51" to-port="1" />
<edge from-layer="51" from-port="2" to-layer="53" to-port="0" />
<edge from-layer="52" from-port="0" to-layer="53" to-port="1" />
<edge from-layer="53" from-port="2" to-layer="55" to-port="0" />
<edge from-layer="54" from-port="0" to-layer="55" to-port="1" />
<edge from-layer="55" from-port="2" to-layer="72" to-port="0" />
<edge from-layer="56" from-port="0" to-layer="57" to-port="1" />
<edge from-layer="57" from-port="2" to-layer="59" to-port="0" />
<edge from-layer="58" from-port="0" to-layer="59" to-port="1" />
<edge from-layer="59" from-port="2" to-layer="61" to-port="0" />
<edge from-layer="60" from-port="0" to-layer="61" to-port="1" />
<edge from-layer="61" from-port="2" to-layer="63" to-port="0" />
<edge from-layer="62" from-port="0" to-layer="63" to-port="1" />
<edge from-layer="63" from-port="2" to-layer="72" to-port="1" />
<edge from-layer="64" from-port="0" to-layer="65" to-port="1" />
<edge from-layer="65" from-port="2" to-layer="67" to-port="0" />
<edge from-layer="66" from-port="0" to-layer="67" to-port="1" />
<edge from-layer="67" from-port="2" to-layer="69" to-port="0" />
<edge from-layer="68" from-port="0" to-layer="69" to-port="1" />
<edge from-layer="69" from-port="2" to-layer="71" to-port="0" />
<edge from-layer="70" from-port="0" to-layer="71" to-port="1" />
<edge from-layer="71" from-port="2" to-layer="72" to-port="2" />
<edge from-layer="72" from-port="3" to-layer="74" to-port="0" />
<edge from-layer="73" from-port="0" to-layer="74" to-port="1" />
<edge from-layer="74" from-port="2" to-layer="76" to-port="0" />
<edge from-layer="75" from-port="0" to-layer="76" to-port="1" />
<edge from-layer="76" from-port="2" to-layer="78" to-port="0" />
<edge from-layer="77" from-port="0" to-layer="78" to-port="1" />
<edge from-layer="78" from-port="2" to-layer="80" to-port="0" />
<edge from-layer="79" from-port="0" to-layer="80" to-port="1" />
<edge from-layer="80" from-port="2" to-layer="82" to-port="0" />
<edge from-layer="81" from-port="0" to-layer="82" to-port="1" />
<edge from-layer="82" from-port="2" to-layer="84" to-port="0" />
<edge from-layer="83" from-port="1" to-layer="84" to-port="1" />
<edge from-layer="84" from-port="2" to-layer="85" to-port="0" />
<edge from-layer="85" from-port="2" to-layer="88" to-port="0" />
<edge from-layer="85" from-port="2" to-layer="102" to-port="0" />
<edge from-layer="86" from-port="0" to-layer="88" to-port="1" />
<edge from-layer="87" from-port="0" to-layer="88" to-port="2" />
<edge from-layer="88" from-port="3" to-layer="89" to-port="0" />
<edge from-layer="89" from-port="1" to-layer="91" to-port="0" />
<edge from-layer="90" from-port="0" to-layer="91" to-port="1" />
<edge from-layer="91" from-port="2" to-layer="93" to-port="0" />
<edge from-layer="92" from-port="0" to-layer="93" to-port="1" />
<edge from-layer="93" from-port="2" to-layer="96" to-port="0" />
<edge from-layer="94" from-port="0" to-layer="96" to-port="1" />
<edge from-layer="95" from-port="0" to-layer="96" to-port="2" />
<edge from-layer="96" from-port="3" to-layer="97" to-port="0" />
<edge from-layer="97" from-port="1" to-layer="99" to-port="0" />
<edge from-layer="98" from-port="0" to-layer="99" to-port="1" />
<edge from-layer="99" from-port="2" to-layer="101" to-port="0" />
<edge from-layer="100" from-port="0" to-layer="101" to-port="1" />
<edge from-layer="101" from-port="2" to-layer="102" to-port="1" />
<edge from-layer="102" from-port="2" to-layer="105" to-port="0" />
<edge from-layer="103" from-port="0" to-layer="105" to-port="1" />
<edge from-layer="104" from-port="0" to-layer="105" to-port="2" />
<edge from-layer="105" from-port="3" to-layer="106" to-port="0" />
<edge from-layer="106" from-port="1" to-layer="108" to-port="0" />
<edge from-layer="107" from-port="0" to-layer="108" to-port="1" />
<edge from-layer="108" from-port="2" to-layer="110" to-port="0" />
<edge from-layer="109" from-port="0" to-layer="110" to-port="1" />
<edge from-layer="110" from-port="2" to-layer="111" to-port="0" />
</edges>
<rt_info>
<Runtime_version value="2024.6.0-17404-4c0f47d2335-releases/2024/6" />
<conversion_parameters>
<framework value="pytorch" />
<is_python_object value="True" />
</conversion_parameters>
<optimum>
<diffusers_version value="0.32.1" />
<optimum_intel_version value="1.22.0.dev0+bb1c68ae" />
<optimum_version value="1.24.0.dev0" />
<pytorch_version value="2.5.1+cpu" />
<transformers_version value="4.46.3" />
</optimum>
<runtime_options>
<ACTIVATIONS_SCALE_FACTOR value="8.0" />
</runtime_options>
</rt_info>
</net>