kaustavbhattacharjee
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -8,7 +8,27 @@ metrics:
|
|
8 |
- f1
|
9 |
model-index:
|
10 |
- name: finetuning-DistillBERT-amazon-polarity
|
11 |
-
results:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
---
|
13 |
|
14 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -16,7 +36,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
# finetuning-DistillBERT-amazon-polarity
|
18 |
|
19 |
-
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on
|
20 |
It achieves the following results on the evaluation set:
|
21 |
- Loss: 0.1920
|
22 |
- Accuracy: 0.9167
|
@@ -56,4 +76,4 @@ The following hyperparameters were used during training:
|
|
56 |
- Transformers 4.38.1
|
57 |
- Pytorch 2.1.0+cu121
|
58 |
- Datasets 2.18.0
|
59 |
-
- Tokenizers 0.15.2
|
|
|
8 |
- f1
|
9 |
model-index:
|
10 |
- name: finetuning-DistillBERT-amazon-polarity
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: text-classification
|
14 |
+
name: Text Classification
|
15 |
+
dataset:
|
16 |
+
name: amazon_polarity
|
17 |
+
type: sentiment
|
18 |
+
args: default
|
19 |
+
metrics:
|
20 |
+
- type: accuracy
|
21 |
+
value: 0.9166666666666666
|
22 |
+
name: Accuracy
|
23 |
+
- type: loss
|
24 |
+
value: 0.1919892132282257
|
25 |
+
name: Loss
|
26 |
+
- type: f1
|
27 |
+
value: 0.9169435215946843
|
28 |
+
name: F1
|
29 |
+
datasets:
|
30 |
+
- amazon_polarity
|
31 |
+
pipeline_tag: text-classification
|
32 |
---
|
33 |
|
34 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
36 |
|
37 |
# finetuning-DistillBERT-amazon-polarity
|
38 |
|
39 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on [Amazon Polarity](https://huggingface.co/datasets/amazon_polarity) dataset.
|
40 |
It achieves the following results on the evaluation set:
|
41 |
- Loss: 0.1920
|
42 |
- Accuracy: 0.9167
|
|
|
76 |
- Transformers 4.38.1
|
77 |
- Pytorch 2.1.0+cu121
|
78 |
- Datasets 2.18.0
|
79 |
+
- Tokenizers 0.15.2
|