MicroLlama2-checkpoints / microllama_v2.yaml
keeeeenw's picture
Upload microllama_v2.yaml with huggingface_hub
63ae844 verified
# The name of the model to pretrain. Choose from names in ``litgpt.config``. Mutually exclusive with
# ``model_config``. (type: Optional[str], default: null)
model_name: micro-llama-300M-v2
# A ``litgpt.Config`` object to define the model architecture. Mutually exclusive with
# ``model_config``. (type: Optional[Config], default: null)
model_config:
# Directory in which to save checkpoints and logs. If running in a Lightning Studio Job, look for it in
# /teamspace/jobs/<job-name>/share. (type: <class 'Path'>, default: out/pretrain)
out_dir: out/pretrain/micro-llama-v2
# The precision to use for pretraining. Possible choices: "bf16-true", "bf16-mixed", "32-true". (type: Optional[str], default: null)
precision: bf16-mixed
# Optional path to a checkpoint directory to initialize the model from.
# Useful for continued pretraining. Mutually exclusive with ``resume``. (type: Optional[Path], default: null)
# initial_checkpoint_dir: /root/litgpt/out_lightning_ai/pretrain/micro-llama-v2/step-00128000/
initial_checkpoint_dir: /root/litgpt/out_lightning_ai/step-00128000-converted
# Path to a checkpoint directory to resume from in case training was interrupted, or ``True`` to resume
# from the latest checkpoint in ``out_dir``. An error will be raised if no checkpoint is found. Passing
# ``'auto'`` will resume from the latest checkpoint but not error if no checkpoint exists.
# (type: Union[bool, Literal["auto"], Path], default: False)
resume: False
# Data-related arguments. If not provided, the default is ``litgpt.data.TinyLlama``.
data: MicroLlama
# Training-related arguments. See ``litgpt.args.TrainArgs`` for details
train:
# Number of optimizer steps between saving checkpoints (type: Optional[int], default: 1000)
save_interval: 1000
# Number of iterations between logging calls (type: int, default: 1)
log_interval: 10
# Number of samples between optimizer steps across data-parallel ranks (type: int, default: 48)
# Scale this number according to the number of GPU and memory size per GPU
# For example, we used 16 for 4 x 48G L40s
global_batch_size: 32
# Number of samples per data-parallel rank (type: int, default: 12)
# Scale this number according to the memory size per GPU
# For example, we used 12 for 24G 4090
micro_batch_size: 4
# Number of iterations with learning rate warmup active (type: int, default: 2000)
lr_warmup_steps: 2000
# Number of epochs to train on (type: Optional[int], default: null)
epochs:
# Total number of tokens to train on (type: Optional[int], default: 3000000000000)
max_tokens: 3000000000000
# Limits the number of optimizer steps to run. (type: Optional[int], default: null)
max_steps:
# Limits the length of samples. Off by default (type: Optional[int], default: null)
max_seq_length: 2048
# Whether to tie the embedding weights with the language modeling head weights. (type: Optional[bool], default: False)
tie_embeddings:
# (type: Optional[float], default: 1.0)
max_norm: 1.0
# (type: float, default: 4e-05)
min_lr: 4.0e-05
# Evaluation-related arguments. See ``litgpt.args.EvalArgs`` for details
eval:
# Number of optimizer steps between evaluation calls (type: int, default: 1000)
interval: 1000
# Number of tokens to generate (type: Optional[int], default: null)
max_new_tokens:
# Number of iterations (type: int, default: 100)
max_iters: 100
# Whether to evaluate on the validation set at the beginning of the training
initial_validation: false
# Optimizer-related arguments
optimizer:
class_path: torch.optim.AdamW
init_args:
# (type: float, default: 0.001)
lr: 4e-4
# (type: float, default: 0.01)
weight_decay: 0.1
# (type: tuple, default: (0.9,0.999))
betas:
- 0.9
- 0.95
# How many devices/GPUs to use. Uses all GPUs by default. (type: Union[int, str], default: auto)
devices: auto
# How many nodes to use. (type: int, default: 1)
num_nodes: 1
# Optional path to the tokenizer dir that was used for preprocessing the dataset. Only some data
# module require this. (type: Optional[Path], default: null)
tokenizer_dir: checkpoints/meta-llama/Llama-3.2-1B
# The name of the logger to send metrics to. (type: Literal['wandb', 'tensorboard', 'csv'], default: tensorboard)
logger_name: wandb
# The random seed to use for reproducibility. (type: int, default: 42)
seed: 42